颜丙乾, 任奋华, 蔡美峰, 郭奇峰, 乔趁. THMC多场耦合作用下岩石力学实验与数值模拟研究进展[J]. 工程科学学报, 2021, 43(1): 47-57. DOI: 10.13374/j.issn2095-9389.2019.07.29.005
引用本文: 颜丙乾, 任奋华, 蔡美峰, 郭奇峰, 乔趁. THMC多场耦合作用下岩石力学实验与数值模拟研究进展[J]. 工程科学学报, 2021, 43(1): 47-57. DOI: 10.13374/j.issn2095-9389.2019.07.29.005
YAN Bing-qian, REN Fen-hua, CAI Mei-feng, GUO Qi-feng, QIAO Chen. Research review of rock mechanics experiment and numerical simulation under THMC multi-field coupling[J]. Chinese Journal of Engineering, 2021, 43(1): 47-57. DOI: 10.13374/j.issn2095-9389.2019.07.29.005
Citation: YAN Bing-qian, REN Fen-hua, CAI Mei-feng, GUO Qi-feng, QIAO Chen. Research review of rock mechanics experiment and numerical simulation under THMC multi-field coupling[J]. Chinese Journal of Engineering, 2021, 43(1): 47-57. DOI: 10.13374/j.issn2095-9389.2019.07.29.005

THMC多场耦合作用下岩石力学实验与数值模拟研究进展

Research review of rock mechanics experiment and numerical simulation under THMC multi-field coupling

  • 摘要: 岩石多场耦合作用的研究是当前研究的热点难点问题,为了更好的分析岩石在多场耦合作用条件下的作用机理,主要通过实验和数值模拟两方面进行研究。在总结国内外多场耦合微观–细观–宏观多尺度力学试验设备的改进和研发、数值模拟软件及耦合计算程序的开发等方面的研究现状的基础上,展望多场多相耦合作用下岩石力学实验设备和数值分析的研究方向。为了研究岩石多场耦合作用下的力学性能,通过改进和研发设计了不同物理场多场耦合试验系统,在开发试验设备的基础上引起和发展现代无损探测手段,比如实时CT(Computed tomography)扫描技术,电镜扫描技术(SEM)、核磁共振技术(NMRI)、X射线立体成像法、超声波技术等,既能无损检测到岩石的内部孔隙微细观结构及演化过程,也能得出岩石在温度−水流−应力−化学(THMC)多场耦合作用中各物理场的宏观关系,进一步从微细观和宏观相结合的角度得出岩石在多场耦合作用下的性能。随着计算机技术的进步,岩石多场耦合作用下的数值模拟软件及耦合计算程序的开发有了一定的发展,特别是TOUGHREACT与FLAC3D相结合的THMC四场耦合作用的数值模拟软件和数值仿真软件Comsol与Matlab对接的多场耦合计算程序的开发,为岩石多场耦合模拟的开展提供了技术支持。

     

    Abstract: The study of multi-field coupling of rocks is currently a pressing and difficult problem at present. To better analyze the interaction mechanism of rocks under of multi-field coupling, research is mainly carried out by experiment and numerical simulation. On the basis of summarizing the research and development of multi-field coupling micro-meso-macro multi-scale mechanical test equipment at home and abroad, and the developments of numerical simulation software and coupling calculation program, the development direction of rock mechanical test equipment and numerical analysis under multi field and multi-phase coupling are prospected. To study the mechanical properties of rocks under multi-field coupling, a multi-field coupling test system with different physical fields was designed by improvement through research and development. Based on the development of the test equipment, modern non-destructive detection methods, such as real-time computed tomography (CT) scanning technology, scanning electron microscopy (SEM), nuclear magnetic resonance imaging (NMRI), X-ray stereo imaging and ultrasonography, were developed. Acoustic wave technology can not only nondestructively detect the micro-structure and evolution process of rock internal pores, but also clarify the macro-relationship of rock physical fields in the multi-field coupling action of thermal-hydrological-mechanical-chemical (THMC), and further clarify the rock performance under multi-field coupling action from the perspective of a combination of micro and macro scales. With the advancement of computer technology, the development of numerical simulation software and coupling calculation program under multi-field coupling of rock has made certain progress. Especially, the development of the numerical simulation software of THMC four-field coupling interaction combined with TOUGHREACT and FLAC3D, and the multi-field coupling calculation program of Comsol docking with MATLAB provide technical supports for the development of multi-field coupling simulation of rocks. Finally, the key difficulties and future research directions of rock multi-field coupling research were discussed and analyzed, which can provide a reference for engineering practice and related problems.

     

/

返回文章
返回