陶璋, 伍玲梅, 张亚飞, 高志猛, 杨穆. 生物质多孔碳基复合相变材料制备及性能[J]. 工程科学学报, 2020, 42(1): 113-119. DOI: 10.13374/j.issn2095-9389.2019.08.06.002
引用本文: 陶璋, 伍玲梅, 张亚飞, 高志猛, 杨穆. 生物质多孔碳基复合相变材料制备及性能[J]. 工程科学学报, 2020, 42(1): 113-119. DOI: 10.13374/j.issn2095-9389.2019.08.06.002
TAO Zhang, WU Ling-mei, ZHANG Ya-fei, GAO Zhi-meng, YANG Mu. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119. DOI: 10.13374/j.issn2095-9389.2019.08.06.002
Citation: TAO Zhang, WU Ling-mei, ZHANG Ya-fei, GAO Zhi-meng, YANG Mu. Preparation and properties of biomass porous carbon composite phase change materials[J]. Chinese Journal of Engineering, 2020, 42(1): 113-119. DOI: 10.13374/j.issn2095-9389.2019.08.06.002

生物质多孔碳基复合相变材料制备及性能

Preparation and properties of biomass porous carbon composite phase change materials

  • 摘要: 目前,通过多孔高导热载体与相变材料复合的方式提升有机复合相变材料综合性能的方法得到广泛应用。多孔碳作为负载能力强,导热性能良好的载体材料成为研究的热点,但如何绿色、廉价、简易地制备出该类载体仍是研究的难点。本文以天然生物质材料松木和竹木为碳源,在梯度温度和氮气气氛下热处理,使生物质材料碳化并进一步发生石墨化转变,制备出生物质天然孔道结构的多孔高导热碳基载体材料。采用真空熔融浸渍法将有机相变材料石蜡和多孔碳基载体材料进行高效复合,制备得到生物质多孔碳/石蜡复合相变材料。通过扫描电子显微镜(SEM)、红外光谱仪(FTIR)、同步热分析仪(TGA)、X射线衍射仪(XRD)、拉曼光谱仪(Raman)、压汞分析仪(MIP)、差示扫描量热仪(DSC)、激光导热仪对载体材料及复合相变材料进行结构表征和性能测试。测试结果表明:生物质多孔碳载体材料孔道结构保存完好,石墨化转变明显,保证了有机相变芯材的高效稳定负载。传热效率上,相比于纯石蜡芯材,以松木和竹木为碳源制得的多孔碳/石蜡复合相变材料热导率分别提高了100%和216%,达到了0.48 W·m‒1·K‒1和0.76 W·m‒1·K‒1。在此基础上,通过对比松木和竹木为原料制得的复合相变材料的芯材负载量,相变焓值,热导率的变化,进一步探讨了生物质结构对复合相变材料性能的影响机制。

     

    Abstract: Presently, combining porous and high-thermal-conductivity matrices with phase change materials is widely used to improve the comprehensive properties of organic composite phase change materials. Porous carbon, as a carrier material with strong load capacity and good thermal conductivity, has become a focus of interest in research. Nevertheless, how to easily prepare this material in a green and inexpensive way still remains a challenge. Subsequent to heat treatment at gradient temperature and nitrogen atmosphere, the biomass materials were carbonized and further transformed to graphite. Then, the porous high-thermal-conductivity carbon materials were obtained by replicating the structure of biomass natural materials. Finally, the biomass porous carbon/paraffin composite phase change materials were prepared using vacuum melting impregnation method. The obtained biomass porous carbon and composite phase change materials were characterized by scanning electron microscope (SEM), flourier transformation infrared spectroscopy (FTIR), thermal gravity analysis (TGA), X-ray diffractometer (XRD), Raman spectroscopy, mercury intrusion porosimetry (MIP), differential scanning calorimetry (DSC), and hot-disk thermal analysis. The characterization results show that the structure of the biomass porous carbon material is well preserved, which ensures the efficient and stable load of organic phase change materials. In terms of heat transfer efficiency as compared with pure paraffin materials, the thermal conductivities of porous pine carbon and bamboo carbon/paraffin composite phase change materials are increased by 100% and 216%, respectively, reaching 0.48 W·m‒1·K‒1 and 0.76 W·m‒1·K‒1, respectively. Based on these results, by comparing the loading amount of paraffin, phase change enthalpy, and thermal conductivity of the composite phase change materials prepared from pine and bamboo, the influence mechanism of the biomass structure on the properties of the composite phase change materials is further explored. In summary, unlike the traditional composite phase change materials, the preparation process in this experiment is simple, the raw material sources are widely available, cheap, and green, and the thermal conductivity is significantly improved. Therefore, the proposed preparation process has a broad application prospect in the future.

     

/

返回文章
返回