李金乐, 李珊, 杨晓京, 杨沆林, 马一鸣. 单晶锗微切削温度场建模及实验分析[J]. 工程科学学报, 2020, 42(11): 1499-1506. DOI: 10.13374/j.issn2095-9389.2019.11.21.003
引用本文: 李金乐, 李珊, 杨晓京, 杨沆林, 马一鸣. 单晶锗微切削温度场建模及实验分析[J]. 工程科学学报, 2020, 42(11): 1499-1506. DOI: 10.13374/j.issn2095-9389.2019.11.21.003
LI Jin-le, LI Shan, YANG Xiao-jing, YANG Hang-lin, MA Yi-ming. Modeling and experimental analysis of micro-cutting temperature on single crystal germanium[J]. Chinese Journal of Engineering, 2020, 42(11): 1499-1506. DOI: 10.13374/j.issn2095-9389.2019.11.21.003
Citation: LI Jin-le, LI Shan, YANG Xiao-jing, YANG Hang-lin, MA Yi-ming. Modeling and experimental analysis of micro-cutting temperature on single crystal germanium[J]. Chinese Journal of Engineering, 2020, 42(11): 1499-1506. DOI: 10.13374/j.issn2095-9389.2019.11.21.003

单晶锗微切削温度场建模及实验分析

Modeling and experimental analysis of micro-cutting temperature on single crystal germanium

  • 摘要: 针对单晶锗微切削热传导问题,采用移动热源法分别建立了在剪切滑移面热源和前刀面摩擦热源作用下单晶锗的微切削温升理论模型,计算了单晶锗三种切削速度下的最高切削温度,同时以同类硬脆性材料单晶硅的切削温度对此模型进行了验证。通过单点金刚石车削实验,利用红外热像仪对单晶锗微切削过程中的温度进行了在线测量。实验测量结果与模型计算结果对比发现,不同切削速度下,单晶锗的最高切削温度变化趋势一致,切削速度越大温度越高,其相对误差在2.56%~6.64%之间;单晶硅的最高切削温度相对误差为3.84%。模型能够对单晶锗及同类硬脆性材料的温度场进行较准确的预测,为研究其热效应提供进一步理论支持。

     

    Abstract: Single crystal germanium is an important infrared optical material, which is widely used in defense industry, microelectronics, and other fields. It is extremely difficult to achieve the required surface quality by conventional processing methods due to its hardness and brittleness. Practically, single-point diamond tool is used for micro-cutting. During the micro-cutting process of single crystal germanium, the change of cutting temperature leads to increased tool wear and material surface hardening, which results in poor surface quality and also reduces processing accuracy. Therefore, analyzing the micro-cutting temperature distribution of single crystal germanium has become the key to better understanding its heat transfer mechanism and for improving product quality and efficiency. Aiming to analyze heat transfer mechanism of single crystal germanium micro-cutting, the moving heat source method was used. It establishes the theoretical model with temperature rise during micro-cutting of single crystal germanium under the action of the heat source of the shear slip surface and the friction heat source of the rake face and the chip, respectively. The maximum cutting temperature of germanium at three cutting speeds, and the model was verified with the cutting temperature of homogeneous hard and brittle material single crystal silicon. Through a single-point diamond turning experiment, an infrared thermal imager was used to measure the temperature of the single crystal germanium micro-cutting process online. When experimental measurement results and the model calculation results are compared, it revealed that the maximum cutting temperature of single crystal germanium has displayed same trend under different cutting speeds, which is that the cutting temperature is directly proportional to the cutting speed. The relative error is found to be between 2.56% and 6.64%. The relative error of the maximum cutting temperature is 3.84%. The model can accurately predict the temperature field of single crystal germanium and also for similar hard and brittle materials, providing further theoretical support for analyzing its thermal effects.

     

/

返回文章
返回