王皓, 包燕平, 智建国, 高帅, 王敏, 史超. 稀土Ce对含磷高强IF钢铸轧全过程MnS夹杂物影响[J]. 工程科学学报, 2020, 42(S): 1-8. DOI: 10.13374/j.issn2095-9389.2020.04.06.s11
引用本文: 王皓, 包燕平, 智建国, 高帅, 王敏, 史超. 稀土Ce对含磷高强IF钢铸轧全过程MnS夹杂物影响[J]. 工程科学学报, 2020, 42(S): 1-8. DOI: 10.13374/j.issn2095-9389.2020.04.06.s11
WANG Hao, BAO Yan-ping, ZHI Jian-guo, GAO Shuai, WANG Min, SHI Chao. Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process[J]. Chinese Journal of Engineering, 2020, 42(S): 1-8. DOI: 10.13374/j.issn2095-9389.2020.04.06.s11
Citation: WANG Hao, BAO Yan-ping, ZHI Jian-guo, GAO Shuai, WANG Min, SHI Chao. Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process[J]. Chinese Journal of Engineering, 2020, 42(S): 1-8. DOI: 10.13374/j.issn2095-9389.2020.04.06.s11

稀土Ce对含磷高强IF钢铸轧全过程MnS夹杂物影响

Effect of rare earth Ce on MnS inclusions in high strength IF steel containing phosphorus during a continuous casting and rolling process

  • 摘要: 对含磷高强IF钢中MnS夹杂物控制进行了分析。通过对含磷高强IF钢中添加稀土进行对比试验,借助扫描电镜等设备对铸坯1/8、1/2、7/8厚度方向的试样以及热轧、冷轧、连退工序的带钢试样进行了夹杂物统计及二维形貌的观测对比,并对铸坯试样中小样电解的夹杂物及轧制各工序试样中原貌提取的夹杂物进行三维形貌的观测对比。结果表明:铸坯中心MnS夹杂物数量分布明显大于铸坯近表面,稀土的加入,先与钢中S相结合,并在凝固过程中较MnS提前析出,生成了小尺寸的球状夹杂物,可明显降低铸坯各位置MnS夹杂物的尺寸及数量;未加稀土钢在带钢轧制各工序中MnS夹杂物尺寸为10 μm左右,且具有遗传性,在轧制过程中压延变长,但没有碎化弥散。加入稀土后形成了S–O–Ce类夹杂物,形态呈球形,尺寸为2~5 μm,且独立弥散分布,不会对带钢组织连续性造成影响,有利于产品各相关性能。

     

    Abstract: The control of MnS inclusions in high strength IF steel containing phosphorus was analyzed. The inclusion statistics and two-dimensional morphologies of the samples at the slab thicknesses of 1/8, 1/2, and 7/8 and in hot rolling, cold rolling, and continuous annealing processes were observed and compared via an ASPEX scanning electron microscope (SEM). In addition, the three-dimensional morphologies of the inclusions extracted from the electrolysis of billet samples and inclusions extracted from the original rolling process samples were observed and compared. The results show that the amount distribution of MnS inclusions in the center of the slab is obviously larger than that near the surface of the slab. When a rare earth element is added, it is preferentially combined with the S in the steel and precipitates earlier than MnS in the solidification process, forming small spherical inclusions, which can significantly reduce the size and quantity of MnS inclusions at various positions of the slab. The size of MnS inclusions of the steel strip without a rare earth element addition is approximately 10 μm in each rolling process, which is inherited. During the rolling process, MnS inclusions become longer, but there is no fragmentation and dispersion. S–O–Ce inclusions are formed after adding a rare earth element. These inclusions are spherical, 2–5 μm in size, and distributed independently, which do not affect the structure continuity of the strip steel and benefit the relevant properties of the products.

     

/

返回文章
返回