杨建平, 张江山, 刘青. 炼钢–连铸区段3种典型工序界面技术研究进展[J]. 工程科学学报, 2020, 42(12): 1542-1556. DOI: 10.13374/j.issn2095-9389.2020.05.08.001
引用本文: 杨建平, 张江山, 刘青. 炼钢–连铸区段3种典型工序界面技术研究进展[J]. 工程科学学报, 2020, 42(12): 1542-1556. DOI: 10.13374/j.issn2095-9389.2020.05.08.001
YANG Jian-ping, ZHANG Jiang-shan, LIU Qing. Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section[J]. Chinese Journal of Engineering, 2020, 42(12): 1542-1556. DOI: 10.13374/j.issn2095-9389.2020.05.08.001
Citation: YANG Jian-ping, ZHANG Jiang-shan, LIU Qing. Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section[J]. Chinese Journal of Engineering, 2020, 42(12): 1542-1556. DOI: 10.13374/j.issn2095-9389.2020.05.08.001

炼钢–连铸区段3种典型工序界面技术研究进展

Research progress on three kinds of classic process interface technologies in steelmaking-continuous casting section

  • 摘要: 面对钢厂智能化发展的时代要求,炼钢–连铸区段工序界面技术受到越来越多冶金学者的关注,其不仅是解决工序关系集合协同–优化问题的重要手段,也影响着工序功能集合解析–优化和流程工序集合重构–优化的效果。本文对炼钢–连铸区段3种典型工序界面技术,即钢包运行控制、天车运行控制和生产运行模式优化的研究进展进行阐述,其中,钢包运行控制包括钢包热状态监测、钢包选配以及钢包调度,天车运行控制包括吊运任务的分配和同跨/异跨天车的协同调度,生产运行模式优化包括工序/设备产能、时间节奏与炉–机对应模式的匹配设计。此外,针对炼钢–连铸区段多工序协同运行的制约因素,指出工序界面技术协同的必要性,并对上述工序界面技术的协同机制与协同方案进行了阐述。

     

    Abstract: Metallurgical process engineering proposed by academician Ruiyu Yin is a new branch in the field of metallurgy, which deals with the physical nature, structure, and global behavior of metallurgical manufacturing process. Process interface technology used in steelmaking-continuous casting section (SCCS) is developed from metallurgical process engineering. It is used to study and analyze the running dynamics of mass flow in steelmaking plants. In recent years, the intelligent and green production in steelmaking plants has become the demand and necessity of the time because of the rapid development of intelligent manufacturing represented by Industry 4.0 in Germany. Nowadays, the automation control of single-process has been realized in most steelmaking plants at home and abroad, which is a stepping zone and has created the foundation for the intelligent and green production. But at the same time, importance also should be given for the improvement in the multi-process operation of SCCS considering the global optimization on steelmaking production. Undoubtedly the process interface technology is an important method to deal with the collaboration-optimization of process relationship set, but also it has a greater influence on the analysis-optimization of process function set and the reconstruction-optimization of process set. Therefore, the process interface technology has created lot of interest and drawn greater attention from scholars and experts of metallurgy, which results in the great improvement of the multi-process operation in SCCS. Currently, three kinds of classic process interface technologies, including ladle cycling control, crane running control, and operation mode optimization, have become the most important research areas because of their significant effect on the high-efficient connection of mass flow among multi-process. The scope of ladle cycling control includes the monitoring of thermal state and the matching and scheduling of ladles. The task assignment and multi-crane collaborative scheduling are the most important components of crane running control and it is of great interest to research further. When operation mode optimization is considered, the improvement of furnace-caster coordinating mode based on the matching of capacity and rhythm can be regarded as the most interesting research area. It is known that the operation mode is the fundamental for ladle cycling and crane running, and moreover, the status of ladle cycling and crane running also can guide the further optimization of operation mode. Based on above analysis, this paper presented a detailed overview of progress made in the research on abovementioned three kinds of classic process interface technologies in SCCS. Further, the necessity of collaboration between process interface technologies was also illustrated, aiming at unfavorable restraints of multi-process collaborative operation. In addition, the collaboration mechanisms and schemes of all three kinds of classic process interface technologies were described in detail. Finally, it is expected that this review could offer some reference and guidance for the improvements in multi-process operation of SCCS.

     

/

返回文章
返回