罗振敏, 刘利涛, 王涛, 张江, 程方明. C2H6、C2H4、CO与H2对甲烷爆炸压力及动力学特性影响[J]. 工程科学学报, 2022, 44(3): 339-347. DOI: 10.13374/j.issn2095-9389.2020.10.22.002
引用本文: 罗振敏, 刘利涛, 王涛, 张江, 程方明. C2H6、C2H4、CO与H2对甲烷爆炸压力及动力学特性影响[J]. 工程科学学报, 2022, 44(3): 339-347. DOI: 10.13374/j.issn2095-9389.2020.10.22.002
LUO Zhen-min, LIU Li-tao, WANG Tao, ZHANG Jiang, CHENG Fang-ming. Effect of C2H6、C2H4、CO and H2 on the explosion pressure and kinetic characteristics of methane[J]. Chinese Journal of Engineering, 2022, 44(3): 339-347. DOI: 10.13374/j.issn2095-9389.2020.10.22.002
Citation: LUO Zhen-min, LIU Li-tao, WANG Tao, ZHANG Jiang, CHENG Fang-ming. Effect of C2H6、C2H4、CO and H2 on the explosion pressure and kinetic characteristics of methane[J]. Chinese Journal of Engineering, 2022, 44(3): 339-347. DOI: 10.13374/j.issn2095-9389.2020.10.22.002

C2H6、C2H4、CO与H2对甲烷爆炸压力及动力学特性影响

Effect of C2H6、C2H4、CO and H2 on the explosion pressure and kinetic characteristics of methane

  • 摘要: 为量化可燃气体爆燃引起的潜在危险性提供相关的基础数据,设计出在气体燃料加工、储存和运输过程中能够承受爆炸危险的容器。运用20 L球形气体爆炸系统,在不同初始温度(298~373 K)与不同的预混气体(CO、H2、C2H4、C2H6)体积分数(0.4%~2.0%)条件下,获取了甲烷体积分数为7%与11%的甲烷−空气混合物的爆炸压力特性参数。此外,采用 CHEMKIN软件,模拟分析了不同体积分数的预混气体在爆炸过程中H·、O· 和·OH自由基摩尔分数的变化趋势,并进行了敏感性分析。结果表明,同一体积分数的预混气体,随初始温度的增加,最大爆炸压力呈线性降低,最大爆炸压力上升速率几乎恒定或下降。同一初始温度,对于甲烷体积分数为7%的甲烷−空气混合物,随着预混气体的体积分数增大到2%,其最大爆炸压力、最大爆炸压力上升速率均呈增大的趋势,而甲烷体积分数为11%的甲烷−空气混合物对应的最大爆炸压力与最大爆炸压力上升速率均呈减小趋势。随着预混气体体积分数的增加,甲烷体积分数为7%的甲烷−空气混合物在爆炸过程中H·、O·和·OH自由基摩尔分数峰值上升。O·和·OH自由基摩尔分数峰值在甲烷体积分数为11%的甲烷−空气混合物中呈下降趋势,H·自由基摩尔分数峰值有所上升。对于甲烷体积分数为7%与11%的甲烷−空气混合物,其影响甲烷的关键基元反应式不变,敏感性系数随预混气体体积分数的增加而减弱。

     

    Abstract: The gas composition of spontaneous coal combustion in a high-temperature mine fire area is extremely complex. Due to the low-temperature oxidation or pyrolysis of coal, a variety of combustible and explosive gases are produced, such as CH4, CO, H2, C2H6, C2H4, C3H8, and C2H2. The paper provided associated basic data to quantify potential hazards caused by flammable gases and design containers that can withstand explosion during gas fuel processing, storage, and transportation. Under different initial temperatures (298–373 K) and varying volume fractions of the premixed gases (CO, H2, C2H4, and C2H6: 0.4%–2.0%), when volume fraction of methane is 7% and 11%, the explosion pressure characteristic parameters were obtained in a 20 L spherical gas explosion system. In addition, the change in trend of the mole fraction of H·, O·, and OH radicals of the gas mixture during the explosion process was analyzed and simulated. Sensitivity analysis was performed using the CHEMKIN software. Results show that at the same volume fractions of the premixed gases, the maximum explosion pressure linearly decreases with increasing initial temperature and the maximum pressure rise rate is almost constant or slightly decreasing. At the same initial temperature, when volume fraction of methane is 7%, as the volume fractions of the premixed gases increases to 2%, the maximum explosion pressure and the maximum pressure rise rate show an increasing trend. However, a decreasing trend is observed with 11% methane–air mixture. When volume fraction of methane is 7%, with the increased gas mixture volume fraction, the maximum mole fraction of the free radicals, H·, O·, and ·OH increases. When volume fraction of methane is 11%, the maximum mole fraction of O· and ·OH radicals indicated a downward trend, whereas that of the H· radical increases with increase in volume fractions of the premixed gases. When volume fraction of methane is 7% and 11%, chemical kinetics analysis revealed that the addition of premixed gases had little effect on the key elementary reactions. Moreover, the sensitivity coefficient of CH4 decreases with increase in volume fractions of the premixed gases.

     

/

返回文章
返回