菅夏琰, 金俊腾, 王瑶, 沈秋雨, 刘永畅. 钠离子电池层状氧化物正极材料研究进展[J]. 工程科学学报, 2022, 44(4): 601-611. DOI: 10.13374/j.issn2095-9389.2021.05.26.001
引用本文: 菅夏琰, 金俊腾, 王瑶, 沈秋雨, 刘永畅. 钠离子电池层状氧化物正极材料研究进展[J]. 工程科学学报, 2022, 44(4): 601-611. DOI: 10.13374/j.issn2095-9389.2021.05.26.001
JIAN Xia-yan, JIN Jun-teng, WANG Yao, SHEN Qiu-yu, LIU Yong-chang. Recent progress on layered oxide cathode materials for sodium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(4): 601-611. DOI: 10.13374/j.issn2095-9389.2021.05.26.001
Citation: JIAN Xia-yan, JIN Jun-teng, WANG Yao, SHEN Qiu-yu, LIU Yong-chang. Recent progress on layered oxide cathode materials for sodium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(4): 601-611. DOI: 10.13374/j.issn2095-9389.2021.05.26.001

钠离子电池层状氧化物正极材料研究进展

Recent progress on layered oxide cathode materials for sodium-ion batteries

  • 摘要: 钠离子电池凭借资源和成本优势在大规模储能和低速电动车领域展现出极大应用前景。层状氧化物理论容量较高且易于合成,是目前最具应用潜力的钠离子电池正极材料之一。如何改善层状氧化物正极材料的循环稳定性并提升其能量密度是当前的科学前沿问题。首先,综述了层状氧化物正极材料的几种典型改性方法,从组分设计的角度,探讨了不同掺杂元素、不同掺杂位点对材料容量和循环寿命的影响,阐述了利用阴离子反应提供额外容量的基本原理,概述了提高阴离子氧化还原可逆性的掺杂策略;从结构设计的角度,介绍了复合相材料的制备、微观结构的设计和调控等方向的最新进展;从表面设计的角度,讨论了金属氧化物、磷酸盐等作为包覆层对改善材料稳定性和倍率性能的作用机制。最后,总结了层状氧化物储钠正极材料现阶段面临的挑战,并对其未来的发展方向进行了展望,提出了新的研究思路。

     

    Abstract: Driven by the national strategic goal of “emission peak and carbon neutrality”, developing grid-scale energy storage systems (ESSs) for high-efficiency utilization of renewable clean energy is of great importance and urgency. Currently, lithium-ion batteries (LIBs) are being widely used in portable electronics and electric vehicles markets due to their high energy density and long cycling life. Nevertheless, the ever-increasing price and uneven distribution of lithium resources limit the further applications of LIBs for large-scale ESS. Recently, sodium-ion batteries (SIBs) have gained tremendous attention as promising large-scale energy storage devices and low-speed electric vehicle power sources, owing to the low-cost and abundant sodium reserves. However, the larger size and heavier mass of Na+ than those of Li+ commonly lead to sluggish reaction kinetics, severe volume expansion, and the undesirable structural failure of electrode materials upon charge/discharge, which hinder the commercial value of SIBs. Leveraging high-performance cathode materials is expected to boost the development of SIBs because cathodes largely determine the cost and electrochemical performance of batteries. Among the reported cathode candidates, layered oxide materials hold great potential due to their high capacity and a facile synthesis process; however, these materials face some challenges such as low capacity retention and poor air stability. Recently, exploring appropriate methods to strengthen the structural stability and further enhance the energy density of layered oxides has become an emerging research hotspot. In this regard, various strategies, such as element composition and relative content manipulation and microstructure and surface/interface modulation, have been proposed. In this review, typical modification methods for improving the Na-storage performance of layered oxide cathodes are comprehensively summarized. From the perspective of component design, the effects of different doping elements and doping sites on the capacity and cycling life are discussed. In addition, the basic principle of anionic redox reaction to offer extra capacity is elucidated, and the doping strategies for enhancing the anionic redox reversibility are outlined. From the perspective of structure design, the recent progresses on the preparation of composite phase materials and microstructures design are introduced. From the perspective of surface design, the functional mechanism of metal oxides and phosphates as coating layers to improve the structural stability and rate performance is explored. Finally, the challenging issues facing layered sodium oxide cathodes and possible remedies in the future are discussed. We believe that this review will shed light on the development of advanced layered oxide cathode materials for SIBs.

     

/

返回文章
返回