武绍文, 张延玲, 张帅, 高朝辉. 铬元素固化机理及利用不锈钢工业含铬固废制备无机材料研究进展[J]. 工程科学学报, 2021, 43(12): 1725-1736. DOI: 10.13374/j.issn2095-9389.2021.09.15.007
引用本文: 武绍文, 张延玲, 张帅, 高朝辉. 铬元素固化机理及利用不锈钢工业含铬固废制备无机材料研究进展[J]. 工程科学学报, 2021, 43(12): 1725-1736. DOI: 10.13374/j.issn2095-9389.2021.09.15.007
WU Shao-wen, ZHANG Yan-ling, ZHANG Shuai, GAO Chao-hui. Research progress of chromium solidification mechanism and preparation of inorganic materials by Cr-containing solid wastes from stainless steel industry[J]. Chinese Journal of Engineering, 2021, 43(12): 1725-1736. DOI: 10.13374/j.issn2095-9389.2021.09.15.007
Citation: WU Shao-wen, ZHANG Yan-ling, ZHANG Shuai, GAO Chao-hui. Research progress of chromium solidification mechanism and preparation of inorganic materials by Cr-containing solid wastes from stainless steel industry[J]. Chinese Journal of Engineering, 2021, 43(12): 1725-1736. DOI: 10.13374/j.issn2095-9389.2021.09.15.007

铬元素固化机理及利用不锈钢工业含铬固废制备无机材料研究进展

Research progress of chromium solidification mechanism and preparation of inorganic materials by Cr-containing solid wastes from stainless steel industry

  • 摘要: 我国不锈钢工业近年来飞速发展,产生大量含铬固废。含Cr固废的综合利用工艺技术的开发,Cr元素的解毒/固化机理是需要考虑的关键问题。本文综述了前人在该领域的相关研究工作,包括国内外不锈钢工业固废的化学和物相组成、铬在不同含铬固废中的存在形式、铬在环境中的循环富集规律和毒性。探讨了含Cr矿相的演变规律、Cr在不同矿相中的固化机理。总结了目前利用不锈钢工业含铬固废制备水泥、微晶玻璃和烧结陶瓷等各类无机材料的研究进展。分析了目前利用不锈钢工业含铬固废制备各类无机材料过程中存在的瓶颈问题。以期为未来中国无害化、高值化、资源化处理不锈钢含铬固废并实现产业化应用提供基础借鉴。

     

    Abstract: In recent years, with the rapid development of the stainless steel industry in China, a large number of Cr-containing solid wastes are produced. Chromium resources in China are very scarce, and China mainly dependent on imported chromium. In the current situation of a limited supply of chromium ore in the world, determining the efficient utilization of chromium resources will become very important. The recovery of chromium in various solid wastes produced by the stainless steel industry has practical economic significance. In addition, an uncontrolled emission of Cr-containing solid wastes will endanger the ecological environment and hamper biological safety. Further, the large scale of China’s stainless steel industry has caused urgent environmental problems, i.e., the whole manufacturing process has produced a large number of Cr-containing solid wastes, including stainless steel slag, stainless steel dust, stainless steel rolled iron scale, and pickling sludge. The detoxification/solidification of Cr to obtain long-term safety performance is an important factor that must be considered in the development of a comprehensive utilization process technology for a large amount of Cr-containing solid wastes generated by the stainless steel industry. This paper reviewed the previous research work in this field, including the work regarding the chemical and phase compositions of the stainless steel industrial solid waste, the existing forms of chromium in different Cr-containing solid wastes, the cycle enrichment rule, and the toxicity of chromium in the environment. The evolution law of Cr-bearing mineral phases and the solidification mechanism of Cr in different mineral phases were discussed. The research progress of various inorganic materials such as cement, glass ceramics, and sintered ceramics prepared using Cr-containing solid wastes in the stainless steel industry was summarized. Bottleneck problems in the preparation of various inorganic materials from chromium-containing solid wastes in the stainless steel industry were analyzed to provide a basis for the future harmless, high-value, resource-based treatment of stainless steel Cr-containing solid wastes and the realization of industrial applications in China.

     

/

返回文章
返回