WANG Jian-quan, MA Zhang-chao, SUN Lei, ZHANG Chao-yi, LI Wei. Evolution, key technology, prospects, and applications of industrial network architecture[J]. Chinese Journal of Engineering, 2023, 45(8): 1376-1389. DOI: 10.13374/j.issn2095-9389.2022.08.01.003
Citation: WANG Jian-quan, MA Zhang-chao, SUN Lei, ZHANG Chao-yi, LI Wei. Evolution, key technology, prospects, and applications of industrial network architecture[J]. Chinese Journal of Engineering, 2023, 45(8): 1376-1389. DOI: 10.13374/j.issn2095-9389.2022.08.01.003

Evolution, key technology, prospects, and applications of industrial network architecture

  • Based on a summary of the characteristics of the industrial Internet, combined with the overall status of the existing industrial Internet, this paper analyzes the problems of the traditional industrial automation closed five-tier architecture and concludes that the current industrial Internet remains in a stage of technological development and maturation, which restricts the promotion and standardization of China’s intelligent manufacturing level to some extent. In the future, the industrial Internet will break the original data hierarchy structure, break the data barrier, and realize the development of intelligent manufacturing toward intelligent, flattening, lightweight, and green. First, this paper proposes a new industrial network collaboration architecture on the cloud side that supports efficient data flow. The proposed architecture is a flat, platform-based structure that realizes cloud-side collaboration and the integration of control, computing power, and network. Second, on the basis of the overall architecture of the industrial network, two key technologies are proposed to adapt the new industrial network infrastructure. One is 5G–time-sensitive networking (TSN) collaborative transmission technology. TSN realizes the interconnection and integration of heterogeneous networks in the industrial field based on the data link layer, and 5G–TSN collaborative transmission has become an important evolution trend of the intelligent factory network. Three key technical contents are introduced: 5G–TSN heterogeneous network convergence architecture, network clock adaptation mechanism, and software defined network (SDN)-based integration management and resource scheduling. The other key technology is cloud PLC technology based on a deterministic network, and the virtualization and cloud control system is the basis for breaking the original closed industrial control system. On the one hand, cloud-based hardware resources can be used to achieve one-to-many control, saving a large amount of industrial control equipment deployment investment costs. More importantly, the centralized control system can achieve unified control and optimization of global resources. This paper introduces the virtualization 5G cloud chemical industry control technology with two parts: technical content and technical route. Third, this paper proposes a cloud-based allocation of control resources and a cloud–network integration collaboration scenario and designs the 5G cloud-based programmable logic controller (PLC) and EtherCAT fusion system and the EtherCAT and TSN fusion system for real-time motion control. Through the testing of the end-to-end delay and cross-network time synchronization accuracy of the actual system, the current end-to-end delay of network transmission is less than 5 ms, the cross-network time synchronization error is between 100–400 us, and the accuracy is less than 100 ns These performance indicators reach the current industry-leading level. The test platform verifies the scientificalness and rationality of the new industrial network architecture. Finally, the integration problems and potential solutions of efficiency, reliability, and security are discussed in the future industrial automation system integrating network, control, and computing.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return