• 《工程索引》(EI)刊源期刊
  • Scopus
  • 中文核心期刊
  • 中国科学引文数据库来源期刊

循环荷载下花岗岩应力门槛值的细观能量演化及岩爆倾向性

张英, 苗胜军, 郭奇峰, 王培涛

张英, 苗胜军, 郭奇峰, 王培涛. 循环荷载下花岗岩应力门槛值的细观能量演化及岩爆倾向性[J]. 工程科学学报, 2019, 41(7): 864-873. DOI: 10.13374/j.issn2095-9389.2019.07.004
引用本文: 张英, 苗胜军, 郭奇峰, 王培涛. 循环荷载下花岗岩应力门槛值的细观能量演化及岩爆倾向性[J]. 工程科学学报, 2019, 41(7): 864-873. DOI: 10.13374/j.issn2095-9389.2019.07.004
ZHANG Ying, MIAO Sheng-jun, GUO Qi-feng, WANG Pei-tao. Meso-energy evolution and rock burst proneness of the stress thresholds of granite under triaxial cyclic loading and unloading test[J]. Chinese Journal of Engineering, 2019, 41(7): 864-873. DOI: 10.13374/j.issn2095-9389.2019.07.004
Citation: ZHANG Ying, MIAO Sheng-jun, GUO Qi-feng, WANG Pei-tao. Meso-energy evolution and rock burst proneness of the stress thresholds of granite under triaxial cyclic loading and unloading test[J]. Chinese Journal of Engineering, 2019, 41(7): 864-873. DOI: 10.13374/j.issn2095-9389.2019.07.004

循环荷载下花岗岩应力门槛值的细观能量演化及岩爆倾向性

基金项目: 

国家自然科学基金资助项目 51604017

国家自然科学基金资助项目 51574014

"973"计划资助项目 2015CB060200

详细信息
    通信作者:

    苗胜军, E-mail: miaoshengjun@163.com

  • 分类号: TD315

Meso-energy evolution and rock burst proneness of the stress thresholds of granite under triaxial cyclic loading and unloading test

More Information
  • 摘要:

    为研究三轴循环加卸载条件下三山岛花岗岩细观能量演化规律, 采用颗粒流理论确定了花岗岩的应力门槛值(起裂应力σci、损伤应力σcd和峰值强度σf), 研究了应力门槛值对应的边界能、应变能(线性接触应变能和平行黏结应变能)、耗散能(摩擦能和阻尼能)、动能随围压变化的规律, 并从能量角度建立了岩爆倾向性评价指标Wx. 结果表明: 三山岛花岗岩不同围压下相应的σci/σf位于37.0%~44.8%区间, σcd/σf位于81.2%~89.0%区间, 随着围压的增大, 起裂边界能、应变能和耗散能呈线性关系增加, 损伤(峰值)边界能、应变能和耗散能呈指数关系增加; 其中耗散能受围压影响最为敏感, 增幅倍数最大, 其次是边界能, 最后为应变能. 围压对起裂应变能比例影响不大, 损伤和峰值应变能比例随围压增大缓慢减小, 峰值应变能比例下降幅度最大. 基于岩爆倾向性评价指标Wx可知, 当围压在20 MPa内, 三山岛花岗岩岩爆倾向性相对较小; 当围压达到30 MPa时岩爆倾向性开始迅速增加. 研究成果为岩爆倾向性的评价提供了新的参考指标, 进一步为井下岩体工程的稳定性研究提供了新思路.

    Abstract:

    To study the meso-energy evolution of Sanshandao granite under triaxial cyclic loading and unloading, the stress thresholds (the crack initiation stress σci, crack damage stress σcd, and peak stress σf) of Sanshandao granite were determined; the variation law of the boundary energy, strain energy (linear contact strain energy and parallel bond strain energy), dissipation energy (friction energy and damping energy), and kinetic energy corresponding to each stress threshold with confining pressures was analyzed; and a new index Wx for evaluating the rock burst proneness was established from the perspective of energy based on a simulation using PFC3D. The results show that the corresponding σci/σf is in the range of 37.0% to 44.8%, and σcd/σf is in the range of 81.2% to 89.0% under different confining pressures. With the increase of confining pressure, the boundary energy, strain energy, and dissipation energy of the crack initiation increase linearly, and the boundary energy, strain energy, and dissipation energy of the crack damage and peak increase exponentially. Among them, the dissipation energy exhibits the maximum increment with the change in confining pressure, followed by the boundary energy, and then the strain energy. The confining pressure has little effect on the proportion of the strain energy of crack initiation. Moreover, with increasing pressure, the proportion of the crack damage and the peak strain energy decrease slowly; however, the proportion of peak strain energy decreases to a greater extent. According to the new index Wx for the evaluation of the rock burst proneness, when the confining pressure was less than 20 MPa, the rock burst proneness of Sanshandao granite was relatively small, and when the confining pressure reached 30 MPa, the rock burst proneness began to increase rapidly. This study provides a new reference index for the evaluation of rock burst proneness and further provides a new idea for the stability study of underground rock mass engineering.

  • 图  1   试验设备. (a) WEP-600试验机;(b) MTS810试验机

    Figure  1.   Test equipments: (a) WEP-600; (b) MTS810

    图  2   混合颗粒黏结模型.(a) 单轴模型;(b) 三轴模型;(c) 巴西劈裂模型

    Figure  2.   Mixed bonded particle model: (a) uniaxial compression model; (b) triaxial compression model; (c) Brazilian splitting model

    图  3   花岗岩巴西劈裂试验和模拟结果对比

    Figure  3.   Results of Brazilian splitting test of granite obtained from numerical simulation and experiments

    图  4   花岗岩单轴压缩试验和模拟结果对比

    Figure  4.   Results of uniaxial compression test of granite obtained from numerical simulation and experiments

    图  5   不同围压下模拟和试验的强度包络线对比

    Figure  5.   Comparison of the strength envelopes of simulations and tests under different confining pressures

    图  6   三轴循环加卸载条件下裂纹不同发展阶段的应力-应变曲线(σ3=5 MPa)

    Figure  6.   Stress-strain diagram obtained from triaxial cyclic loading and unloading showing different stages of crack development(σ3=5 MPa)

    图  7   不同细观能量动态变化曲线(σ3=5 MPa). (a) 边界能;(b) 线性接触应变能;(c) 平行黏结应变能;(d) 摩擦能;(e) 阻尼能;(f) 动能

    Figure  7.   Different meso-energy dynamic curves(σ3=5 MPa): (a) boundary energy; (b) linear contact strain energy; (c) parallel bond strain energy; (d) friction energy; (e) damping energy; (f) kinetic energy

    图  8   岩石变形破坏过程中能量与应力变化曲线(σ3=5 MPa)

    Figure  8.   Energy and stress curves of rock deformation and failure process(σ3=5 MPa)

    图  9   不同围压下应力门槛值细观能量变化曲线. (a) 边界能;(b) 应变能;(c) 耗散能

    Figure  9.   Energy evolution curves of stress thresholds under different confining pressures: (a) boundary energy; (b) strain energy; (c) dissipation energy

    图  10   不同围压下应力门槛值应变能比例变化曲线

    Figure  10.   Strain energy ratio curves of stress thresholds under different confining pressures

    图  11   不同围压循环加卸载下Wet指标变化曲线

    Figure  11.   Variation of Wet under different confining pressures

    图  12   不同围压循环加卸载下Wcf指标变化曲线

    Figure  12.   Variation of Wcf under different confining pressures

    图  13   不同围压循环加卸载下Wx指标变化曲线

    Figure  13.   Variation of Wx under different confining pressures

    表  1   三山岛花岗岩试验力学特性

    Table  1   Mechanical properties of Sanshandao granite test

    密度/(kg·m-3) 单轴抗拉强度/MPa 拉伸弹性模量/GPa 单轴抗压强度/MPa 压缩弹性模量/GPa 单轴起裂应力/MPa 单轴损伤应力/MPa 泊松比 拉压比 摩擦角/(°) 内聚力/MPa
    2686 12.40 40.99 94.37 43.98 37.75 81.16 0.20 0.13 49.96 17.19
    下载: 导出CSV

    表  2   混合颗粒黏结模型细观力学参数

    Table  2   Meso-mechanical parameters of the mixed bonded particle model

    矿物名称 Rmin/mm Rmax/mm ρ/(kg·m-3) μ E*/GPa kr E*/GPa λ n σc/MPa c/MPa ϕ/(°)
    斜长石 1.5 2.5 2560 0.5 96.41 1.33 137.64 1 0.36 224 224 12.5
    钾长石 1.5 2.5 2630 0.5 105.93 1.33 151.23 1 0.36 252 252 15.0
    石英 1.5 2.5 2650 0.5 103.42 1.33 147.64 1 0.36 235.2 235.2 13.5
    黑云母 1.5 2.5 3050 0.5 32.83 1.33 46.86 1 0.36 196 196 10.0
    下载: 导出CSV

    表  3   岩爆倾向性评价指标

    Table  3   Evaluation indexes for rock burst proneness

    评价指标 计算公式 指标分类标准
    Wet Wet=ER/ED
    ER为卸载时恢复的弹性应变能,
    ED为加卸载循环中耗散的能量.
    Singh[19]的硬岩分类标准:
    Wet < 10,弱岩爆倾向;
    10≤Wet < 15,中等岩爆倾向;
    Wet≥15,强烈岩爆倾向.
    Wcf Wcf=E1/E2
    E1为峰前总能量,
    E2为峰后总能量.
    Wcf≤1,无岩爆倾向;
    1 < Wcf≤2,弱岩爆倾向;
    2 < Wcf≤3,中等岩爆倾向;
    Wcf>3,强烈岩爆倾向.
    下载: 导出CSV
  • [1] 周辉, 孟凡震, 张传庆, 等. 硬岩应力-应变门槛值特点及产生机制. 岩石力学与工程学报, 2015, 34(8): 1513 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508002.htm

    Zhou H, Meng F Z, Zhang C Q, et al. Characteristics and mechanism of occurrence of stress thresholds and corresponding strain for hard rock. Chin J Rock Mech Eng, 2015, 34(8): 1513 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508002.htm

    [2] 衡帅, 杨春和, 李芷, 等. 基于能量耗散的页岩脆性特征. 中南大学学报(自然科学版), 2016, 47(2): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm

    Heng S, Yang C H, Li Z, et al. Shale brittleness estimation based on energy dissipation. J Cent South Univ Sci Technol, 2016, 47(2): 577 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201602030.htm

    [3] 温韬, 唐辉明, 刘佑荣, 等. 不同围压下板岩三轴压缩过程能量及损伤分析. 煤田地质与勘探, 2016, 44(3): 80 doi: 10.3969/j.issn.1001-1986.2016.03.015

    Wen T, Tang H M, Liu Y R, et al. Energy and damage analysis of slate during triaxial compression under different confining pressures. Coal Geol Expl, 2016, 44(3): 80 doi: 10.3969/j.issn.1001-1986.2016.03.015

    [4] 邓华锋, 胡玉, 李建林, 等. 循环加卸载过程中砂岩能量耗散演化规律. 岩石力学与工程学报, 2016, 35(增刊1): 2869 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1032.htm

    Deng H F, Hu Y, Li J L, et al. The evolution of sandstone energy dissipation under cyclic loading and unloading. Chin J Rock Mech Eng, 2016, 35(Suppl 1): 2869 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1032.htm

    [5] 谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制. 岩石力学与工程学报, 2008, 27(9): 1729 doi: 10.3321/j.issn:1000-6915.2008.09.001

    Xie H P, Ju Y, Li L Y, et al. Energy mechanism of deformation and failure of rock masses. Chin J Rock Mech Eng, 2008, 27(9): 1729 doi: 10.3321/j.issn:1000-6915.2008.09.001

    [6] 张志镇, 高峰. 3种岩石能量演化特征的试验研究. 中国矿业大学学报, 2015, 44(3): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm

    Zhang Z Z, Gao F. Experimental investigations on energy evolution characteristics of coal, sandstone and granite during loading process. J China Univ Mining Technol, 2015, 44(3): 416 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201503004.htm

    [7]

    Kidybiński A. Bursting liability indices of coal. Int J Rock Mech Min Sci Geomech Abstracts, 1981, 18(4): 295 doi: 10.1016/0148-9062(81)91194-3

    [8]

    Wang J A, Park H D. Comprehensive prediction of rock burst based on analysis of strain energy in rocks. Tunnell Undergr Space Technol, 2001, 16(1): 49 doi: 10.1016/S0886-7798(01)00030-X

    [9]

    Aubertin M, Gill D E, Simon R. On the use of the brittleness index modified (BIM) to estimate the post-peak behavior or rocks//1st North American Rock Mechanics Symposium. Austin, 1994: ARMA-1994-0945

    [10] 刘树新, 鲁思佐, 陈阳. 基于多重判据的某深部矿区岩爆倾向性研究. 矿业研究与开发, 2017, 37(2): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201702003.htm

    Liu S X, Lu S Z, Chen Y. Study on rockburst proneness of a deep mine based on multiple criterions. Min Res Dev, 2017, 37(2): 9 https://www.cnki.com.cn/Article/CJFDTOTAL-KYYK201702003.htm

    [11] 唐礼忠, 潘长良, 王文星. 用于分析岩爆倾向性的剩余能量指数. 中南工业大学学报, 2002, 33(2): 129 doi: 10.3969/j.issn.1672-3104.2002.02.004

    Tang L Z, Pan C L, Wang W X. Surplus energy index for analyzing rock burst proneness. J Cent South Univ Technol, 2002, 33(2): 129 doi: 10.3969/j.issn.1672-3104.2002.02.004

    [12] 唐礼忠, 王文星. 一种新的岩爆倾向性指标. 岩石力学与工程学报, 2002, 21(6): 874 doi: 10.3321/j.issn:1000-6915.2002.06.022

    Tang L Z, Wang W X. New rock burst proneness index. Chin J Rock Mech Eng, 2002, 21(6): 874 doi: 10.3321/j.issn:1000-6915.2002.06.022

    [13]

    Simon R. Analysis of Fault-Slip Mechanisms in Hard Rock Mining [Dissertation]. Montreal: McGill University, 1999

    [14]

    Potyondy D O, Cundall P A. A bonded-particle model for rock. Int J Rock Mech Min Sci, 2004, 41(8): 1329 doi: 10.1016/j.ijrmms.2004.09.011

    [15]

    Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstracts, 1994, 31(6): 643 doi: 10.1016/0148-9062(94)90005-1

    [16]

    Brace W F, Paulding Jr B W, Scholz C H. Dilatancy in the fracture of crystalline rocks. J Geophys Res, 1966, 71(16): 3939 doi: 10.1029/JZ071i016p03939

    [17]

    Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression. Int J Fract Mech, 1965, 1(3): 137

    [18]

    Hallbauer D K, Wagner H, Cook N G W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Min Sci Geomech Abstracts, 1973, 10(6): 713 doi: 10.1016/0148-9062(73)90015-6

    [19]

    Singh S P. Classification of mine workings according to their rockburst proneness. Min Sci Technol, 1989, 8(3): 253 doi: 10.1016/S0167-9031(89)90404-0

    [20] 蔡美峰, 冀东, 郭奇峰. 基于地应力现场实测与开采扰动能量积聚理论的岩爆预测研究. 岩石力学与工程学报, 2013, 32(10): 1973 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm

    Cai M F, Ji D, Guo Q F. Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance. Chin J Rock Mech Eng, 2013, 32(10): 1973 https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201310003.htm

  • 期刊类型引用(12)

    1. 刘文佳,刘晓峰,王博,崔淑洁. 特种车辆驾驶疲劳研究现状. 军事医学. 2024(02): 154-157 . 百度学术
    2. 郭春东,李云浩,颜硕,沈琳. 基于改进DMAIC的打磨工人工效学模型与作业姿势改善. 工业工程. 2024(05): 53-63 . 百度学术
    3. 张铝,张丹. 基于相对心率建立体力劳动强度评价模型. 青海大学学报. 2023(01): 80-87 . 百度学术
    4. 周建亮,陈玮,范丽萍. 基于生理指标的建筑工人攀登作业疲劳实验研究. 中国安全生产科学技术. 2023(03): 195-202 . 百度学术
    5. 何佳媛,易灿南,刘雪阳,郑艳芳,胡丹. 建筑行业破拆作业人员作业疲劳测量量表研究. 山西建筑. 2023(19): 185-188 . 百度学术
    6. 莫俊文,钟建栋. 高海拔铁路工程不同工种施工人员的作业疲劳评估. 土木工程与管理学报. 2022(04): 10-15+31 . 百度学术
    7. 洪莲,于娜. 家具制造作业体力负荷对认知能力的影响. 林业工程学报. 2021(01): 191-196 . 百度学术
    8. 李浩,刘根,文笑雨,王昊琪,张玉彦,李客,马文锋,孙春亚,罗国富,黄荣杰. 面向人机交互的数字孪生系统工业安全控制体系与关键技术. 计算机集成制造系统. 2021(02): 374-389 . 百度学术
    9. 张劲松,蒋玉龙. 基于SNA的装配式项目工人管理影响因素研究. 项目管理技术. 2021(10): 28-32 . 百度学术
    10. 张婉如,方铖,刘志钢,朱琳. 地铁车站行车人员作业前后心理疲劳及认知能力变化研究. 人类工效学. 2021(05): 54-58 . 百度学术
    11. 王越,刘洋,徐明伟. 基于表面肌电的工人上肢肌肉疲劳试验研究. 华北科技学院学报. 2019(01): 98-102 . 百度学术
    12. 冼杰森,陈晓宁. 基于心率变异性的人体疲劳兴奋测试方案设计. 电子技术与软件工程. 2018(21): 80-82 . 百度学术

    其他类型引用(25)

图(13)  /  表(3)
计量
  • 文章访问数:  1089
  • HTML全文浏览量:  385
  • PDF下载量:  49
  • 被引次数: 37
出版历程
  • 收稿日期:  2018-07-03
  • 网络出版日期:  2021-07-30
  • 刊出日期:  2019-06-30

目录

    /

    返回文章
    返回