• 《工程索引》(EI)刊源期刊
  • Scopus
  • 中文核心期刊
  • 中国科学引文数据库来源期刊

晶面协同NaF–TiO2/rGO的制备及其光催化性能

张超妍, 夏静芬, 谢周云, 张妮, 徐伊漪, 唐力, 杨国靖

张超妍, 夏静芬, 谢周云, 张妮, 徐伊漪, 唐力, 杨国靖. 晶面协同NaF–TiO2/rGO的制备及其光催化性能[J]. 工程科学学报, 2023, 45(2): 278-285. DOI: 10.13374/j.issn2095-9389.2022.04.07.002
引用本文: 张超妍, 夏静芬, 谢周云, 张妮, 徐伊漪, 唐力, 杨国靖. 晶面协同NaF–TiO2/rGO的制备及其光催化性能[J]. 工程科学学报, 2023, 45(2): 278-285. DOI: 10.13374/j.issn2095-9389.2022.04.07.002
ZHANG Chao-yan, XIA Jing-fen, XIE Zhou-yun, ZHANG Ni, XU Yi-yi, TANG Li, YANG Guo-jing. Preparation and photocatalytic performance of NaF–TiO2/rGO with facet synergy[J]. Chinese Journal of Engineering, 2023, 45(2): 278-285. DOI: 10.13374/j.issn2095-9389.2022.04.07.002
Citation: ZHANG Chao-yan, XIA Jing-fen, XIE Zhou-yun, ZHANG Ni, XU Yi-yi, TANG Li, YANG Guo-jing. Preparation and photocatalytic performance of NaF–TiO2/rGO with facet synergy[J]. Chinese Journal of Engineering, 2023, 45(2): 278-285. DOI: 10.13374/j.issn2095-9389.2022.04.07.002

晶面协同NaF–TiO2/rGO的制备及其光催化性能

基金项目: 国家自然科学基金资助项目(51408551);浙江省公益技术应用研究计划资助项目(LGF22E090008);宁波市重点研发计划暨“揭榜挂帅”资助项目(2022Z059);浙江省一流学科课题资助项目(CX2020031);浙江万里学院科研创新团队资助项目
详细信息
    通信作者:

    杨国靖: E-mail: guojing_yang@163.com

  • 分类号: TN304.2

Preparation and photocatalytic performance of NaF–TiO2/rGO with facet synergy

More Information
  • 摘要: 为解决二氧化钛(TiO2)光生载流子寿命短的问题,以钛酸四丁酯、氟化钠和石墨粉为原料,采用水热法制备了NaF–TiO2/rGO复合材料,通过透射电镜(TEM)、X射线能谱分析(EDS)、X射线衍射(XRD)、光致发光光谱(PL)、紫外漫反射光谱(UV–Vis)对复合材料的微观形貌、物相组成、晶型、荧光强度等特性进行了表征,并以降解罗丹明B(RhB)测试其光催化活性及降解机理。实验结果表明,制备得到的产物主要为{001}、{101}晶面协同的锐钛矿相TiO2并均匀分布于rGO表面,NaF与rGO的加入可有效降低其电子–空穴对的复合速率以及带隙宽度从而提高光催化活性。在最佳制备条件下,催化反应80 min后对1×10–5 mol·L–1 罗丹明B(RhB)溶液的降解率可达99.8%,降解速率常数(0.0448 min–1)是NaF TiO2的1.67倍,且复合材料的催化性能随其投加量的增大先加强后保持稳定,pH适用范围为3~11;自由基猝灭实验结果表明,在光催化降解过程中,起主要作用的活性物质是·OH和h+
    Abstract: TiO2 has been widely studied because of its excellent photocatalytic properties but still has defects, such as the short lifetime of the photogenerated carrier. To solve these problems, a novel NaF–TiO2/rGO composite has been successfully synthesized using the hydrothermal method. The photocatalyst complexes were characterized using transmission electron microscope (TEM), energy dispersive spectrometer (EDS), diffraction of X-rays (XRD), photoluminescence spectroscopy (PL), and ultraviolet–visible spectroscopy (UV–Vis). This paper investigates the effects of hydrothermal temperature, hydrothermal time, rGO content, and NaF content on the photocatalytic activity of the NaF–TiO2/rGO composite, and the photocatalytic activity is evaluated using the photocatalytic degradation of RhB under fluorescent lamp illumination for approximately 80 min. The TEM analysis and identification results indicate that rGO can be incorporated into TiO2 to form a heterogeneous structure. The XRD results show that no heterophase formation occurs in the prepared NaF TiO2/rGO composite, and the NaF TiO2/rGO composite on the rGO surface does not cause the crystal shape change of the anatase phase. The PL results indicate that the main products are TiO2 with {001} and {101} facet synergy, and adding rGO effectively reduces the electron–hole pair recombination rate. The UV–Vis results show that the band gap energy of TiO2 is reduced by introducing NaF and further reduced after rGO is combined, thereby enhancing the photocatalytic activity and efficiency of TiO2. Compare and analyze RhB degradation using different factor systems and determine the best synthesis process for preparing composite materials at a hydrothermal temperature of 100 ℃, a hydrothermal time of 10 h, an rGO content of 0.3%, and a NaF content of 30%. The composite material had the best photocatalytic activity. The photocatalytic test results indicate that NaF–TiO2/rGO synthesized using the hydrothermal method has a better light absorption efficiency. The samples have a better RhB degradation rate under simulated solar irradiation. The RhB degradation followed pseudo-first-order reaction kinetics with a rate constant of 0.0448 min−1, which is 1.67 times that of NaF–TiO2. The RhB degradation rate over 80 min reached 99.8%, increasing first and then remaining constant with increasing NaF–TiO2/rGO dosage. Additionally, NaF–TiO2/rGO has good catalytic activity in the pH range of 3−11. The results of free radical capture showed that all three kinds of free radicals participated in RhB photocatalytic degradation, and the main active species in the reaction system should be ·OH and h+.
  • 图  1   TiO2(a)、NaF–TiO2(b)和NaF–TiO2/rGO(c~d)的TEM图及NaF–TiO2/rGO的EDS(e)分析图

    Figure  1.   TEM images of TiO2 (a), NaF–TiO2 (b), and NaF–TiO2/rGO (c and d) and EDS elemental mapping analysis of NaF–TiO2/rGO (e)

    图  2   TiO2、NaF–TiO2和NaF–TiO2/rGO的XRD图

    Figure  2.   XRD patterns of TiO2, NaF–TiO2, and NaF–TiO2/rGO

    图  3   TiO2、NaF–TiO2和NaF–TiO2/rGO的PL图

    Figure  3.   PL spectra of TiO2, NaF–TiO2, and NaF–TiO2/rGO

    图  4   TiO2、NaF–TiO2和NaF–TiO2/rGO的紫外–可见吸收光谱图(a)以及带隙图(b)

    Figure  4.   UV–Vis spectra (a) and bandgap (b) images of TiO2, NaF–TiO2, and the NaF–TiO2/rGO heterojunction

    图  5   rGO的质量分数(a)、水热温度(b)、水热时间(c)、NaF的质量分数(d)对光催化活性的影响

    Figure  5.   Effect of the amount of rGO added (a), the temperature (b), the time of the hydrothermal treatment (c), and the amount of NaF added (d) to the reaction solution on photocatalytic reduction

    图  6   反应pH对光催化活性的影响

    Figure  6.   Effect of the pH of the reaction solution on photocatalytic reduction

    图  7   复合材料浓度对光催化活性的影响

    Figure  7.   Effect of the composite concentration of the reaction solution on photocatalytic reduction

    图  8   RhB浓度对光催化活性的影响

    Figure  8.   Effect of the RhB concentration of the reaction solution on photocatalytic reduction

    图  9   NaF–TiO2/rGO复合材料对RhB的降解机理图

    Figure  9.   Degradation mechanism diagram of RhB by composite materials

    表  1   不同捕获剂对RhB光降解的影响

    Table  1   Effects of different trapping agents on RhB photodegradation

    Radical scavengerFirst-order kinetics equationsk/min−1t(1/2)/minContribute/%
    Blankln(c0/ct)=0.0448t+0.3597,R2=0.9270.04487.4
    IPAln(c0/ct)=0.0027t+0.005,R2=0.9650.0027253.793.9
    BQln(c0/ct)=0.0203t–0.034,R2=0.9970.020335.754.7
    EDTA-2Naln(c0/ct)=0.0046t+0.006,R2=0.9950.0046148.789.7
    下载: 导出CSV
  • [1]

    Do J Y, Chava R K, Mandari K K, et al. Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanoparticles anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2). Appl Catal B Environ, 2018, 237: 895 doi: 10.1016/j.apcatb.2018.06.070

    [2]

    Zhu S Y, Liang S J, Gu Q, et al. Effect of Au supported TiO2 with dominant exposed {0 0 1} facets on the visible-light photocatalytic activity. Appl Catal B Environ, 2012, 119-120: 146 doi: 10.1016/j.apcatb.2012.02.020

    [3]

    Xiang Q J, Yu J G, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc, 2012, 134(15): 6575 doi: 10.1021/ja302846n

    [4]

    Wu Y Y, Chen X T, Cao J C, et al. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2@TiO2 with sulfur/oxygen dual-defect. Appl Catal B Environ, 2021, 303: 120878

    [5]

    Iliev V, Tomova D, Bilyarska L. Promoting the oxidative removal rate of 2, 4-dichlorophenoxyacetic acid on gold-doped WO3/TiO2/reduced graphene oxide photocatalysts under UV light irradiation. J Photochem Photobiol A Chem, 2018, 351: 69 doi: 10.1016/j.jphotochem.2017.10.022

    [6]

    Fang F, Liu Y X, Sun X, et al. TiO2 facet-dependent reconstruction and photocatalysis of CuOx/TiO2 photocatalysts in CO2 photoreduction. Appl Surf Sci, 2021, 564: 150407 doi: 10.1016/j.apsusc.2021.150407

    [7]

    Zhu Y A, Zhang Z Y, Lu N, et al. Prolonging charge-separation states by doping lanthanide-ions into{001}/{101}facets-coexposed TiO2 nanosheets for enhancing photocatalytic H2 evolution. Chin J Catal, 2019, 40(3): 413 doi: 10.1016/S1872-2067(18)63182-1

    [8] 常岩航, 夏静芬, 杨国靖, 等. (001)面暴露TiO2催化剂的常压制备及性能研究. 工业水处理, 2020, 40(6):27

    Chang Y H, Xia J F, Yang G J, et al. Preparation and properties of TiO2 photocatalyst with (001) crystal plane at atmospheric pressure. Ind Water Treat, 2020, 40(6): 27

    [9] 赵星鹏, 王娅乔, 高生旺, 等. BiOBr/CeO2复合材料的制备及光催化降解磺胺异恶唑. 应用化学, 2021, 38(4):422

    Zhao X P, Wang Y Q, Gao S W, et al. Synthesis of BiOBr/CeO2 composites for photocatalytic degradation of sulfisoxazole. Chin J Appl Chem, 2021, 38(4): 422

    [10]

    Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201 doi: 10.1038/nature04235

    [11]

    Upadhyay R K, Soin N, Roy S S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Adv, 2014, 4(8): 3823 doi: 10.1039/C3RA45013A

    [12]

    Chowdhury S, Balasubramanian R. Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A review. Appl Catal B Environ, 2014, 160-161: 307 doi: 10.1016/j.apcatb.2014.05.035

    [13]

    Pastrana-Martínez L M, Morales-Torres S, Likodimos V, et al. Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl Catal B Environ, 2012, 123-124: 241 doi: 10.1016/j.apcatb.2012.04.045

    [14]

    Cheng P, Yang Z, Wang H, et al. TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water. Int J Hydrog Energy, 2012, 37(3): 2224 doi: 10.1016/j.ijhydene.2011.11.004

    [15]

    Hu X B, Yu Y, Hou W M, et al. Effects of particle size and pH value on the hydrophilicity of graphene oxide. Appl Surf Sci, 2013, 273: 118 doi: 10.1016/j.apsusc.2013.01.201

    [16]

    Pang Q Q, Zhong X H, Yan W S, et al. Role of percentage of {001} crystal facets in TiO2 supports toward the water-gas shift reaction over Au–TiO2 catalysts. Chem Eng J, 2022, 446: 137010 doi: 10.1016/j.cej.2022.137010

    [17]

    Meyer J C, Geim A K, Katsnelson M I, et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun, 2007, 143(1-2): 101 doi: 10.1016/j.ssc.2007.02.047

    [18]

    Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453(7195): 638 doi: 10.1038/nature06964

    [19]

    Wang D T, Li X, Chen J F, et al. Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation. Chem Eng J, 2012, 198-199: 547 doi: 10.1016/j.cej.2012.04.062

    [20]

    Castañeda C, Martínez J J, Santos L, et al. Caffeine photocatalytic degradation using composites of NiO/TiO2-F and CuO/TiO2-F under UV irradiation. Chemosphere, 2022, 288(Pt 2): 132506

    [21]

    Chen X B, Burda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. J Am Chem Soc, 2008, 130(15): 5018 doi: 10.1021/ja711023z

    [22] 肖蓝, 王祎龙, 于水利, 等. 石墨烯及其复合材料在水处理中的应用. 化学进展, 2013, 25(增刊1): 419

    Xiao L, Wang Y L, Yu S L, et al. Graphene-containing composite materials for water treatment. Prog Chem, 2013, 25(Suppl 1): 419

    [23]

    Wang Z Y, Xiang H R, Zou J W, et al. Effect of process factors of microwave hydrothermal method on the preparation of micron-sized spherical α-Al2O3 particles. Inorg Chem Commun, 2021, 133: 108938 doi: 10.1016/j.inoche.2021.108938

    [24]

    Chen P, Di S Y, Qiu X Q, et al. One-step synthesis of F-TiO2/g-C3N4 heterojunction as highly efficient visible-light-active catalysts for tetrabromobisphenol A and sulfamethazine degradation. Appl Surf Sci, 2022, 587: 152889 doi: 10.1016/j.apsusc.2022.152889

    [25]

    Kumar R, Umar A, Kumar G, et al. Ce-doped ZnO nanoparticles for efficient photocatalytic degradation of direct red-23 dye. Ceram Int, 2015, 41(6): 7773 doi: 10.1016/j.ceramint.2015.02.110

    [26] 柴晴雯, 吕艳, 张周, 等. Cu2O@ZnO复合光催化剂对难生物降解有机物的光降解. 中国环境科学, 2019, 39(7):2822

    Chai Q W, Lü Y, Zhang Z, et al. Photodegradation of refractory organic compounds by Cu2O@ZnO composite photocatalyst. China Environ Sci, 2019, 39(7): 2822

    [27] 李翠霞, 金海泽, 杨志忠, 等. 介孔RGO/TiO2复合光催化材料的制备及光催化性能. 无机材料学报, 2017, 32(4):357 doi: 10.15541/jim20160349

    Li C X, Jin H Z, Yang Z Z, et al. Preparation and photocatalytic properties of mesoporous RGO/TiO2 composites. J Inorg Mater, 2017, 32(4): 357 doi: 10.15541/jim20160349

    [28]

    Rasalingam S, Peng R, Koodali R T. An insight into the adsorption and photocatalytic degradation of rhodamine B in periodic mesoporous materials. Appl Catal B Environ, 2015, 174-175: 49 doi: 10.1016/j.apcatb.2015.02.040

  • 期刊类型引用(12)

    1. 刘文佳,刘晓峰,王博,崔淑洁. 特种车辆驾驶疲劳研究现状. 军事医学. 2024(02): 154-157 . 百度学术
    2. 郭春东,李云浩,颜硕,沈琳. 基于改进DMAIC的打磨工人工效学模型与作业姿势改善. 工业工程. 2024(05): 53-63 . 百度学术
    3. 张铝,张丹. 基于相对心率建立体力劳动强度评价模型. 青海大学学报. 2023(01): 80-87 . 百度学术
    4. 周建亮,陈玮,范丽萍. 基于生理指标的建筑工人攀登作业疲劳实验研究. 中国安全生产科学技术. 2023(03): 195-202 . 百度学术
    5. 何佳媛,易灿南,刘雪阳,郑艳芳,胡丹. 建筑行业破拆作业人员作业疲劳测量量表研究. 山西建筑. 2023(19): 185-188 . 百度学术
    6. 莫俊文,钟建栋. 高海拔铁路工程不同工种施工人员的作业疲劳评估. 土木工程与管理学报. 2022(04): 10-15+31 . 百度学术
    7. 洪莲,于娜. 家具制造作业体力负荷对认知能力的影响. 林业工程学报. 2021(01): 191-196 . 百度学术
    8. 李浩,刘根,文笑雨,王昊琪,张玉彦,李客,马文锋,孙春亚,罗国富,黄荣杰. 面向人机交互的数字孪生系统工业安全控制体系与关键技术. 计算机集成制造系统. 2021(02): 374-389 . 百度学术
    9. 张劲松,蒋玉龙. 基于SNA的装配式项目工人管理影响因素研究. 项目管理技术. 2021(10): 28-32 . 百度学术
    10. 张婉如,方铖,刘志钢,朱琳. 地铁车站行车人员作业前后心理疲劳及认知能力变化研究. 人类工效学. 2021(05): 54-58 . 百度学术
    11. 王越,刘洋,徐明伟. 基于表面肌电的工人上肢肌肉疲劳试验研究. 华北科技学院学报. 2019(01): 98-102 . 百度学术
    12. 冼杰森,陈晓宁. 基于心率变异性的人体疲劳兴奋测试方案设计. 电子技术与软件工程. 2018(21): 80-82 . 百度学术

    其他类型引用(25)

图(9)  /  表(1)
计量
  • 文章访问数:  733
  • HTML全文浏览量:  341
  • PDF下载量:  65
  • 被引次数: 37
出版历程
  • 收稿日期:  2022-04-06
  • 网络出版日期:  2022-09-12
  • 发布日期:  2023-01-31

目录

    /

    返回文章
    返回