-
摘要:
矿山边坡因采空区沉降引发的斜面岩土体崩塌破坏,是一种破坏力极强的地质灾害. 由于传统的稳定性评价方法未考虑采空区沉降造成的应力场变异,难以实现矿山边坡的动态稳定性评价,因而在矿山地质灾害预警预防方面存在诸多限制. 基于此,本研究针对矿山采空区滑坡的成因机制,建立了一套适用于矿山边坡的动态稳定性评价方法. 首先通过构建采空区沉降分析模型,计算采空区上方岩体的沉降范围及其产生的冲击作用力,分析沉降对坡体应力场的影响,并在此基础上对传统不平衡推力法进行修正. 案例分析结果显示,传统方法未考虑采空区沉降作用和锁固段的破坏情况,导致稳定性系数计算偏大,为1.355. 而改进方法通过考虑采空区沉降信息,计算得出锁固段稳定性系数为0.667,整体稳定性系数为0.979,与矿山采空区边坡实际破坏情况一致. 当沉降位移比(SHDR)大于0.73时,采空区边坡稳定性会发生明显变异,因而会在相对安全的工况下发生失稳破坏. 改进方法通过考虑采空区沉降作用和锁固段的破坏情况,可以更好地实现矿山边坡稳定性的评价,为矿区更好地应对类似地质灾害提供有效参考.
Abstract:The collapse and damage of inclined rock and soil masses caused by subsidence in mining goaf areas pose serious geological risks. These hazards are not only highly destructive and widespread but also occur suddenly, endangering mine operations and human safety. Traditional stability evaluation methods often overlook the variations in thrust caused by the settlement of goaf blocks at the leading edge locking section, making it difficult to dynamically evaluate mine slope stability. This limits the effectiveness of early warning and prevention strategies for geological disasters in mines. To address these challenges, this study introduces a dynamic stability evaluation method tailored for mine slopes, targeting the landslide formation mechanisms in mining goaf areas. The first involves constructing a settlement analysis model for the goaf areas to calculate the settlement range of the rock mass above the goaf and the resulting impact forces. The proposed model helps analyze how settlement affects the stress field of slopes. Therefore, the traditional unbalanced thrust method is modified. During stability evaluation, the safety factor of the slope’s locking section under the subsidence effect of the goaf was analyzed. When the safety factor of the locking section (SFk) is less than 1, the residual strength needs to be considered to calculate the overall safety factor (SF) of the slope. If SFk exceeds 1, the section remains intact, allowing the SF to be calculated under original working conditions. The Jiweishan case in Wulong, Chongqing, illustrates the limitations of traditional methods, which neglected the settlement and locking section damage, overestimating the safety factor at 1.355. The improved method, accounting for these effects, found the locking section’s safety factor at 0.667, indicating damage and an overall landslide safety factor of 0.979. This finding aligns with the observed failure and instability mechanism of the mine goaf landslide. When the weight of the settlement slope at the rear edge is large, settlement causes instantaneous shear failure of the landslide locking section, substantially reducing the stability of the Jiweishan landslide. The settlement–horizontal displacement ratio (SHDR) of the slope is crucial in dynamic stability analysis for goaf areas. An SHDR greater than 0.73 indicates significant stability variations, leading to instability under working conditions previously deemed safe. This improved method offers a more accurate assessment of mine slope stability by considering goaf settlement and locking section damage, providing a valuable tool for managing similar geological disasters.
-
矿山边坡在采空区沉降作用条件下,往往会引发斜面岩土体产生相当规模的失稳破坏[1],严重威胁着矿山安全生产和人民生命安全,例如2.22内蒙古矿难等. 这类型地质灾害具有强烈的破坏能力、广泛的影响范围和突发性,因此针对矿山采空区滑坡的成因机制开展与之相适用的稳定性评价方法研究具有重大的理论研究意义与工程应用价值[2−3].
国内外学术界对于采空区滑坡的成因机制与稳定性评价等方面做了大量工作. 李腾飞等[4]认为地下采掘导致的上覆岩体差异沉降是关键块体外侧发生局部崩塌的主要原因. 徐杨青和吴西臣[5]分析了露井联合开采条件下边坡变形规律及机理,并利用数值模拟等方法对边坡的破坏模式和稳定性进行了评价. Marschalko等[6]研究了采空区沉降对于矿区施工生产的影响,认为采空区充填治理可减弱坡体沉降塌陷,有利于矿山生产. 赵建军等[7]根据变形特征与变形程度将采空区岩体变形区划分为塌陷区、弯曲–沉降区与倾倒–拉裂区. 朱要强[8]认为采空区支撑结构失稳后引起的坡体发生较大规模拉裂塌陷是采空区滑坡发生的主要诱发原因. 史文兵等[9]通过分析接娘坪变形体,认为矿山重复开采引起的裂缝快速发育是其发生滑动变形的关键. Fathi Salmi等[10]通过数值模拟分析了采矿引起的沉降对边坡稳定性的影响,并对澳大利亚大规模滑坡的破坏机理进行了分析. 任连伟等[11]使用层次分析法和模糊数学原理建立了采空区地基“活化”分级评判模型,并在工程现场进行了应用. Cui等[12]使用通用离散元程序(UDEC)模拟了滑坡在煤层开采过程中的整体响应,分析了振动诱发滑坡的动力触发机制. Li等[13]使用分散元模拟分析了结构面在采矿扰动下的变形演化,基于应力传递、变形响应和失稳前兆建立了滑坡失稳模型,并发现干涉合成孔径雷达(InSAR)技术可用于滑坡的早期监测和预警. 越来越多的研究显示,地下采矿等引起上覆岩层的沉降变形与前缘关键块体锁固段的瞬时失稳破坏,是采空区边坡稳定性发生下降的关键所在[14−15].
目前,传统稳定性评价方法未考虑采空区块体发生沉降造成的前缘锁固段推力变异,因此传统方法在采空区边坡稳定性分析评价存在结果偏大的技术局限. 以鸡尾山滑坡为例,坡体沉降造成锁固段发生剪切失稳破坏,是鸡尾山滑坡稳定性急剧下降的关键所在[16]. 因此,本研究从采空区滑坡的成因机制入手,分析采空区岩体沉降对边坡稳定性的影响,并在此基础上建立一套适用于矿山边坡的动态稳定性评价方法,进而为矿山更好应对类似地质灾害提供一些参考.
1. 矿山边坡稳定性评价方法
1.1 采空区沉降分析模型
大量工程地质勘查表明,发生大规模破坏的采空区边坡在地形上多呈现出前部平缓后部陡峭的特点[16],根据不同位置坡角的变化,坡体可以分为前部锁固段与后部下滑段,如图1(a)所示.
采空区上方岩体沉降通常形成沉降漏斗,从采空区底部到地面,影响范围逐渐扩大. 设沉降岩体平均高度为H,采空区上部宽度为a,采空区左侧距离潜在滑动带高度为h1,在水平面上映射长度为l1,采空区右侧距离潜在滑动带高度为h2,在水平面上映射长度为l2,如图1(b)所示.
采空区上方沉降岩体单位宽度体积V为:
$$ V = \left( {{l_1} + {l_2} + a} \right) \cdot H $$ (1) 根据几何关系,V可用下式表示:
$$ V = \left[ {\left( {{h_1} + {h_2}} \right) \cdot \cot \theta + a} \right] \cdot H $$ (2) 式中,θ为错动角,表示移动带的外圈边界至采空区的最低边界的联线与水平面的夹角,与岩体岩性及其厚度有关,其计算方式为:
$$ \tan \theta = D + 0.0032H $$ (3) 式中,D为岩性影响系数,根据岩体的坚硬程度取值,如表1所示.
表 1 岩性影响系数取值表Table 1. Value table of lithological influence coefficientRock Lithological influence coefficient Soft rock [2.0, 2.8] Medium hard rock [1.2, 2.0] Hard rock [0.7, 1.2] 由式(2)和式(3)可得由于采空区存在所导致的岩体沉降体积:
$$ V = \left(\frac{{{h_1} + {h_2}}}{{D + 0.0032H}} + a\right) \cdot H $$ (4) 根据式(4),采空区沉降坡体重力Ws为:
$$ {W_{\text{s}}} = \left(\frac{{{h_1} + {h_2}}}{{D + 0.0032H}} + a\right) \cdot H \cdot \gamma $$ (5) 式中,γ为采空区上方沉降岩体容重.
受到采空区上方坡体大范围沉降的影响,采空区附近岩体不仅产生了大量裂缝,岩体破碎化程度增高,软弱面范围扩大. 另一方面,大范围的沉降也消耗了沉降坡体大量重力势能. 当矿区存在大面积采空区,且上方岩体发生大范围沉降时,其释放的重力势能将是非常巨大的. 除一部分能量储存在岩体之中,相当一部分能量增加了岩体在水平方向的冲击作用力.
为分析冲击能量对岩体稳定性的影响,采用冲击作用力Fc来量化该冲击作用力,如下式所示:
$$ {F_{\text{c}}} = \beta {W_{\text{s}}}\eta $$ (6) 式中:β为能量转化系数;η为沉降水平位移比(Settlement-horizontal displacement ratio,SHDR),计算式为:$ \eta = \dfrac{{\Delta h}}{{\Delta s}} $,其中,Δh为上方岩体发生的垂直沉降;Δs为岩体在冲击能量作用下发生的水平位移.
由土力学原理可知,当岩土体存在附加竖直应力σz时,岩土体中会产生附加水平应力σp. 设σz与σp在岩土体中产生的形变分别为∆z、∆p,则能量转化系数可用下式进行计算:
$$ \beta = \frac{{{\sigma _{\text{p}}}\Delta p}}{{{\sigma _{\text{z}}}\Delta z + {\sigma _{\text{p}}}\Delta p}} $$ (7) 分别用岩土体侧压力系数k0、泊松比v表示附加竖直应力бz与附加水平应力бp、形变∆z与∆p间的关系:
$$ v = \frac{{\Delta p}}{{\Delta z}} $$ (8) $$ {k_0} = \frac{{{\sigma _{\text{p}}}}}{{{\sigma _{\text{z}}}}} $$ (9) 则能量转换系数亦可用下式进行计算:
$$ \beta = \frac{{{k_0}v}}{{1 + {k_0}v}} $$ (10) 1.2 矿山边坡动态稳定性评价方法
通过上述计算式可计算采空区上方岩体沉降范围,并根据相应转换系数即可求得沉降产生的冲击作用力,从而可分析采空区上方岩体沉降对于坡体应力场的影响. 采空区边坡多具有强度较高的前部锁固段,当沉降变形较大时,锁固段率先发生剪切破坏,进而导致边坡发生整体失稳. 锁固段的稳定性往往决定了采空区边坡的整体稳定性,因此需对锁固段稳定性进行单独分析.
将采空区边坡分为n个条块,如图2所示. 设非锁固段有m个块体,则下部锁固段则有n–m个条块.
锁固段稳定性系数SFk计算式为:
$$ {\text{S}}{{\text{F}}_{\text{k}}} = \frac{{\displaystyle\sum\limits_{i = m + 1}^n {{R_i}{\psi _m}\cdots{\psi _{n - 1}}} + P\sin ({\alpha _m} - {\alpha _{m + 1}}){\psi _m}\cdots{\psi _{n - 1}}}}{{\displaystyle\sum\limits_{i = m + 1}^n {{T_i}{\psi _m}\cdots{\psi _{n - 1}} + P\cos ({\alpha _m} - {\alpha _{m + 1}}){\psi _m}\cdots{\psi _{n - 1}}} }} $$ (11) 式中,ψi为传递系数,Ri和Ti分别表示边坡条块的抗滑力与下滑力,P为下滑段传递给锁固段的应力,即下滑段坡体的下滑力与抗滑力差值,α为边坡条块倾角,m为非锁固段块体.
传递系数ψi计算方式为:
$$ {\psi _i} = \cos ({\alpha _i} - {\alpha _{i + 1}}) - \sin ({\alpha _i} - {\alpha _{i + 1}})\tan {\varphi _{i + 1}} $$ (12) 式中,φ为内摩擦角.
考虑采空区上方岩体沉降影响时,边坡条块抗滑力与下滑力计算方式为:
$$ \begin{split}{R_i} = \;&[{W_i}\cos {\alpha _i} - {\text{U}}{{\text{P}}_i} - ({\text{H}}{{\text{P}}_i} - {\text{H}}{{\text{P}}_{i + 1}})\sin {\alpha _i} - \\ &{A_i}\sin {\alpha _i} - {F_{{\text{c}}i}}\sin {\alpha _i}]\tan {\varphi _i} + {c_i}{L_i}\end{split} $$ (13) $$ {T_i} = {W_i}\sin {\alpha _i} + {A_i}\cos {\alpha _i} + ({\text{H}}{{\text{P}}_i} - {\text{H}}{{\text{P}}_{i + 1}})\cos {\alpha _i} + {F_{ci}}\cos {\alpha _i} $$ (14) 式中,Ai为地震力,ci为土体黏聚力,Li为边坡条块的粘结长度,Fci为边坡条块受到的冲击作用力,Wi为边坡条块的重力,UPi和HPi分别表示边坡条块的滑带水扬压力和静水压力,其计算式为:$ {\text{U}}{{\text{P}}_i} = \dfrac{1}{2}{\gamma _{\text{w}}}{l_i}{h_i} $ 、$ {\text{H}}{{\text{P}}_i} = \dfrac{1}{2}{\gamma _{\text{w}}}h_i^2 $,其中,γw为土体重度,hi为水头高度.
非锁固段传递至锁固段的应力P为:
$$ P = \sum\limits_{i = 1}^m {{T_i}{\psi _i}{\psi _{i + 1}}...{\psi _{m - 1}}} - \sum\limits_{i = 1}^m {{R_i}{\psi _i}{\psi _{i + 1}}...{\psi _{m - 1}}} $$ (15) 分析式中的变量可得,采空区岩体沉降的附加作用力Fc对锁固段稳定性系数影响更大,当沉降坡体质量较大,SHDR较大时,即锁固段稳定性系数会因采空区上方岩体沉降的应力而突变,从而引发采空区边坡整体失稳破坏.
目前,基于力学分析的边坡稳定性的计算方法很多,例如经典的条分法、Janbu法、Bishop法、不平衡推力法等极限平衡法[17−21],以及基于数值模拟的有限元法、有限差分法、离散元法等[22−25],然而这些传统方法多为针对普通边坡的静态稳定性评价方法. 因此,本研究从采空区滑坡的成因机制入手,分析采空区沉降作用对边坡稳定性的影响,建立了考虑采空区沉降作用和锁固段破坏情况的采空区边坡稳定性评价方法,技术路线图如图3所示:首先需要分析采空区沉降作用下边坡锁固段的稳定性系数,当锁固段稳定性系数SFk小于1,则需要使用锁固段残余强度进行边坡整体稳定性系数SF计算;若锁固段稳定性系数SFk大于1,则没有发生破坏,可根据原有工况进行边坡整体稳定性系数SF计算. 与传统方法相比,改进方法通过分析采空区岩体沉降与锁固段的剪切破坏情况,可有效实现采空区边坡的动态稳定性评价,从而改善传统评价方法对采空区边坡分析偏大的技术局限,进而为矿山边坡安全运维提供新的技术支持.
2. 案例分析
2.1 鸡尾山滑坡概述
2009年6月5日,重庆武隆鸡尾山发生了一起典型的采矿诱发型山体滑坡灾害. 鸡尾山采空区滑坡变形历史长,成因机制复杂,在失稳前表现出一定的破坏前兆,但其整体失稳速度之快、破坏规模之大,仍超出所有人预料.
鸡尾山滑坡上部岩体整体前缓后陡,变形主要集中在茅口组灰岩中后侧. 武隆鸡尾山滑坡位于赵家坝背斜北西翼,为倾向NW的单斜构造,附近未发现断层,各地层呈整合接触,滑坡区地质构造简单. 附近岩层产状332°~355°∠15°~35°,研究区南部倾角20°~27°,北部倾角30°~35°. 滑源区的东侧为100多米高的陡崖,崩滑块体顺东侧陡崖最大长度约720 m,其中四边形段长约480 m,三角形段长约240 m;滑源区南侧后缘T0裂缝宽约152 m,北侧岩溶剧烈发育区长约125 m,滑源区西侧边界T1裂缝长约530 m[16,26−28]. 滑坡体从高位剪出,向北偏东方向高速滑动,运动过程中不断碰撞、解体,最后散布堆积在沟谷中. 滑体体积约5×106 m3,碎屑散布堆积区长
2150 m[29−30],图4(a)为鸡尾山滑源区遥感卫星图,图4(b)为鸡尾山滑坡工程地质剖面图. 各岩层参数如表2所示.表 2 鸡尾山滑坡各岩层参数Table 2. Parameters of various rock layers in the Jiweishan landslideRock formation distribution Unit weight, γ/(kN·m–3) Poisson’s ratio, ν Internal friction angle, φ/(°) Cohesion, c/kPa Limestone of Maokou formation 26.70 0.262 20.0 100 Block of locking section 20.00 0.262 25.0 (19.8) 200 (95) Limestone in the middle and upper part of the Qixia formation 26.47 0.216 40.6 492 Lower part limestone of the Qixia formation 26.25 0.255 55.3 560 Clay rock of Liangshan formation 15.50 0.314 32.0 470 Shale of Hanjiadian formation 26.20 0.318 14.4 3840 Note: The residual strength after the failure of the block of locking section is indicated in parentheses. 2.2 鸡尾山稳定性系数计算结果分析
表3为稳定性系数计算结果. 由表3可知,当采用传统不平衡推力法进行计算时,鸡尾山稳定性系数为1.355. 传统方法未考虑采空区沉降作用与锁固段的破坏情况,滑坡整体稳定性系数计算偏大,与实际并不相符.
表 3 稳定性系数计算结果Table 3. Safety factor calculation resultsCalculation result Traditional method Improved method Stable state Calculation error/% SFk — 0.667 Unstable — SF 1.355 0.979 Unstable 27.71 新方法则通过考虑到采空区以上岩体的沉降信息,首先通过计算前部锁固段区块的稳定系数,得出其稳定性系数为0.667处于不稳定状态. 基于锁固段岩体的不稳定状态,得出鸡尾山滑坡的整体稳定性系数为0.979,与滑坡发生破坏的实际情况完全一致.
图5为鸡尾山滑坡动态稳定性评价过程线图. 由图5可知,当SHDR较大时,鸡尾山滑坡的锁固段坡体被瞬间剪出,锁固段稳定性系数由破坏前的1.870下降到0.667,下降了64.33%,从而发生瞬间失稳破坏;这导致滑坡整体稳定性系数下降到0.979,进而产生了超过7×106 m3的滑坡堆积体. 研究分析结果与鸡尾山滑坡的破坏机制相吻合.
综上,由于传统计算方法忽略了矿区沉降对边坡应力场的影响以及锁固段破坏信息,使得整体稳定性计算误差达到了27.71%. 因此在矿山边坡稳定性分析时,需要对SHDR较大的坡体进行重点关注,并分析其锁固段的破坏情况进行动态稳定性分析计算. 新方法由于考虑了采空区沉降作用与锁固段的破坏情况判断,因此可以更好实现矿山边坡稳定性的评价,为矿区更好应对类似滑坡提供有效参考.
3. 讨论
与传统边坡失稳机制不同,矿山采空区滑坡是一种特殊类型的地质灾害. 由于地下开采引起上覆岩体沉降变形,进而引起坡体应力重分布,甚至导致边坡斜面发生失稳破坏[31−32]. 因此,采空区坡体沉降对稳定性的影响分析不容忽视:一方面沉降引起的裂隙的持续扩展,使得岩层的强度发生下降;另一方面地下开采导致坡体发生大规模垂直沉降,进而产生一定水平的推动作用力,显著降低坡体的稳定性[33−34]. 大多数传统方法只考虑了第一种因素,因此计算的稳定性系数往往偏大,而新方法则通过引入采空区沉降分析模型,综合考虑了这两种影响因素,因此更加贴切矿山采空区边坡的实际情况.
由式(6)可知,后缘坡体产生的水平作用力,与坡体的重量和SHDR密切相关. 当后缘沉降坡体重量较大时,沉降后极易产生巨大的水平推力,导致边坡锁固段发生瞬时剪切破坏,边坡稳定性发生急剧下降,这也是鸡尾山滑坡等矿山滑坡产生高速远程滑动的原因之一[35]. 此外,矿山采空区边坡的稳定性系数与SHDR成正比关系,如图6所示. 当鸡尾山边坡的SHDR过大时,进而引起边坡稳定性发生变异. 由图6可知,当SHDR超过0.73时,计算误差超过20%. 因此,在对采空区边坡进行动态稳定性分析时,需重点关注边坡的SHDR指标,当该比值较大时,需要使用改进方法开展矿山采空区边坡的稳定性动态评价.
在众多矿山工程地质勘察资料中不难发现,矿山采空区滑坡往往表现为地表塌陷或沉降. 这是因为矿区地表塌陷与沉降范围不断增大,引起坡体应力场发生明显变异,从而引发大规模的矿山滑坡灾害的发生. 而不平衡推力法等传统稳定性评价方法未考虑这一因素,造成采空区滑坡稳定性评价存在明显的技术局限. 由于采空区上覆岩土体发生大规模沉降是影响采空区滑坡演变和不稳定的关键因素之一,因此考虑了采空区沉降作用与锁固段的破坏情况的动态稳定性评价方法,可以为矿山工程现场更好应对采空区滑坡提供技术支持.
国内外最新的研究表明,岩体下沉引起的张拉裂缝的发生、应力重新分布、下滑力与抗滑力变异是导致滑坡发生的重要因素[36−38]. 目前,在分析矿山采空区边坡稳定性时,大多只考虑裂隙扩展导致的强度指标下降等因素外,很少考虑采空区坡体沉降引起的水平推动作用力. 表4为矿山采空区边坡稳定性评价案例对比分析. 由表4可知,传统方法计算结果偏于保守,稳定性系数均在1.0以上,极易因忽视这些潜在不良地质体而造成严重的人员与财产损失;而改进后的采空区边坡动态稳定性评价方法则改善了传统评价方法对这些不良地质体分析偏保守的技术局限,进而为矿山边坡安全风险防控提供有效参考. 该稳定性评价模型也为采空区边坡的治理防治提供了一些思路,例如,为降低采空区沉降引起的水平冲击作用力的影响,可对一些重要采空区进行充分回填[39],通过限制与规避坡体沉降的发生,从而进一步降低该类型地质灾害的发生概率与失稳风险.
表 4 矿山采空区边坡稳定性评价案例对比分析Table 4. Comparative analysis of stability evaluation cases in mine goaf slopesLandslide case Traditional method Improved method Calculation error/% Jiweishan landslide 1.355 0.979 27.71 Madaling landslide 1.025 0.820 19.99 Jianshanying No.1 landslide 1.222 0.914 25.18 Jianshanying No.2 landslide 1.223 0.811 33.69 Note: The No. 1 landslide is located on the north side of the Jianshanying landslide, while the No. 2 landslide is located on the south side of the Jianshanying landslide. 4. 结论
本研究通过考虑采空区沉降对坡体应力场的影响,对我国滑坡防治工程勘查规范推荐的不平衡推力法进行修正,建立一套适用于矿山采空区边坡的动态稳定性评价方法. 主要结论如下:
(1) 矿山采空区滑坡案例研究得出,新方法由于考虑了采空区沉降作用与锁固段的破坏情况,计算得出鸡尾山滑坡锁固段稳定性系数为0.667,表明锁固段已发生破坏,最终导致滑坡整体稳定性系数为0.979,与矿山采空区滑坡的破坏失稳机制与现场观察结果完全吻合.
(2) 当后缘沉降坡体重量较大时,沉降导致滑坡锁固段发生瞬时剪切破坏,进而导致鸡尾山滑坡稳定性发生急剧下降. 在对采空区滑坡进行动态稳定性分析时,需重点关注边坡的SHDR指标. 当该比值较大时,建议采用本方法开展矿山边坡的稳定性分析评价.
(3) 与传统稳定性评价方法相比,多个矿山采空区传统方法计算结果偏大,均在1.0以上,而新的稳定性评价方法有效改善了传统评价方法分析偏大的技术局限,并进一步揭示了矿山采空区滑坡的破坏失稳机制. 研究结果为矿山等工程领域更好应对类似地质灾害提供一些参考.
-
表 1 岩性影响系数取值表
Table 1 Value table of lithological influence coefficient
Rock Lithological influence coefficient Soft rock [2.0, 2.8] Medium hard rock [1.2, 2.0] Hard rock [0.7, 1.2] 表 2 鸡尾山滑坡各岩层参数
Table 2 Parameters of various rock layers in the Jiweishan landslide
Rock formation distribution Unit weight, γ/(kN·m–3) Poisson’s ratio, ν Internal friction angle, φ/(°) Cohesion, c/kPa Limestone of Maokou formation 26.70 0.262 20.0 100 Block of locking section 20.00 0.262 25.0 (19.8) 200 (95) Limestone in the middle and upper part of the Qixia formation 26.47 0.216 40.6 492 Lower part limestone of the Qixia formation 26.25 0.255 55.3 560 Clay rock of Liangshan formation 15.50 0.314 32.0 470 Shale of Hanjiadian formation 26.20 0.318 14.4 3840 Note: The residual strength after the failure of the block of locking section is indicated in parentheses. 表 3 稳定性系数计算结果
Table 3 Safety factor calculation results
Calculation result Traditional method Improved method Stable state Calculation error/% SFk — 0.667 Unstable — SF 1.355 0.979 Unstable 27.71 表 4 矿山采空区边坡稳定性评价案例对比分析
Table 4 Comparative analysis of stability evaluation cases in mine goaf slopes
Landslide case Traditional method Improved method Calculation error/% Jiweishan landslide 1.355 0.979 27.71 Madaling landslide 1.025 0.820 19.99 Jianshanying No.1 landslide 1.222 0.914 25.18 Jianshanying No.2 landslide 1.223 0.811 33.69 Note: The No. 1 landslide is located on the north side of the Jianshanying landslide, while the No. 2 landslide is located on the south side of the Jianshanying landslide. -
[1] 赵建军, 马运韬, 蔺冰, 等. 平缓反倾采动滑坡形成的地质力学模式研究—以贵州省马达岭滑坡为例. 岩石力学与工程学报, 2016, 35(11):2217 Zhao J J, Ma Y T, Lin B, et al. Geomechanical mode of mining landslides with gently counter-inclined bedding—A case study of Madaling landslide in Guizhou Province. Chin J Rock Mech Eng, 2016, 35(11): 2217
[2] Li J, Li B, He K, et al. Failure mechanism analysis of mining-induced landslide based on geophysical investigation and numerical modelling using distinct element method. Remote Sens, 2022, 14(23): 6071 doi: 10.3390/rs14236071
[3] Yu X Y, Mao X W. A preliminary discrimination model of a deep mining landslide and its application in the Guanwen coal mine. Bull Eng Geol Environ, 2020, 79(1): 485 doi: 10.1007/s10064-019-01565-4
[4] 李腾飞, 李晓, 苑伟娜, 等. 地下采矿诱发山体崩滑地质灾害研究现状与展望. 工程地质学报, 2011, 19(6):831 doi: 10.3969/j.issn.1004-9665.2011.06.006 Li T F, Li X, Yuan W N, et al. Current status and prospects of studies on mechanism of landslide geohazards induced by underground mining. J Eng Geol, 2011, 19(6): 831 doi: 10.3969/j.issn.1004-9665.2011.06.006
[5] 徐杨青, 吴西臣. 复合采动边坡变形机理及稳定性评价. 工程地质学报, 2011, 19(4):594 doi: 10.3969/j.issn.1004-9665.2011.04.023 Xu Y Q, Wu X C. Deformation mechanism and stability analysis of slope under combined mine. J Eng Geol, 2011, 19(4): 594 doi: 10.3969/j.issn.1004-9665.2011.04.023
[6] Marschalko M, Yilmaz I, Lamich D, et al. Underground mining hazard map including building site categories in an area affected by underground mining activities. Environ Earth Sci, 2014, 72(7): 2655 doi: 10.1007/s12665-014-3172-2
[7] 赵建军, 肖建国, 向喜琼, 等. 缓倾煤层采空区滑坡形成机制数值模拟研究. 煤炭学报, 2014, 39(3):424 Zhao J J, Xiao J G, Xiang X Q, et al. Failure mechanism numerical simulation of mining landslide with gentle bedding coal strata. J China Coal Soc, 2014, 39(3): 424
[8] 朱要强. 煤矿采空区不稳定斜坡变形机理研究. 工程勘察, 2014, 42(10):9 Zhu Y Q. Deformation mechanism study of unstable slope in coal mined goaf area. Geotech Investig Surv, 2014, 42(10): 9
[9] 史文兵, 黄润秋, 赵建军, 等. 山区平缓采动斜坡裂缝成因机制研究. 工程地质学报, 2016, 24(5):768 Shi W B, Huang R Q, Zhao J J, et al. Genetic mechanism of mining cracks of gently inclined slope in mountains. J Eng Geol, 2016, 24(5): 768
[10] Fathi Salmi E, Nazem M, Karakus M. Numerical analysis of a large landslide induced by coal mining subsidence. Eng Geol, 2017, 217: 141 doi: 10.1016/j.enggeo.2016.12.021
[11] 任连伟, 宁浩, 顿志林, 等. 高速铁路采空区地基“活化” 分级方法及工程应用. 岩土力学, 2022, 43(增刊2):401 Ren L W, Ning H, Dun Z L, et al. “Activation” classification method and its engineering application of high-speed railway subgrade in goaf area. Rock Soil Mech, 2022, 43(Sup 2): 401
[12] Cui F P, Li B, Xiong C, et al. Dynamic triggering mechanism of the Pusa mining-induced landslide in Nayong County, Guizhou Province, China. Geomat Nat Hazards Risk, 2022, 13(1): 123 doi: 10.1080/19475705.2021.2017020
[13] Li B, Zhao C Y, Li J, et al. Mechanism of mining-induced landslides in the Karst mountains of Southwestern China: A case study of the Baiyan landslide in Guizhou. Landslides, 2023, 20(7): 1481 doi: 10.1007/s10346-023-02047-1
[14] 彭国喜. 西南山区“关键块体”控制型滑坡的形成条件与失稳机理研究—以重庆武隆鸡尾山滑坡为例[学位论文]. 成都:成都理工大学, 2011 Peng G X. The Research of the Formative Condition and Instability Mechanism of the Landslide Controlled by the Key Blocks in Southwest Mountainous—the Cocktail Mountain Landslide in Chongqing Wulong, for Example [Dissertation]. Chengdu : Chengdu University of Technology, 2011
[15] 杜岩, 陆永都, 谢谟文, 等. 考虑初始条件变异的蠕滑型滑坡稳定性评价研究. 岩石力学与工程学报, 2020, 39(S1):2828 Du Y, Lu Y D, Xie M W, et al. Stability evaluation of creeping landslide considering variation of initial conditions. Chin J Rock Mech Eng, 2020, 39(S1): 2828
[16] 冯振, 殷跃平, 李滨, 等. 重庆武隆鸡尾山滑坡视向滑动机制分析. 岩土力学, 2012, 33(9):2704 Feng Z, Yin Y P, Li B, et al. Mechanism analysis of apparent dip landslide of Jiweishan in Wulong, Chongqing. Rock Soil Mech, 2012, 33(9): 2704
[17] 卢应发, 张凌晨, 张玉芳, 等. 边坡渐进破坏多参量评价指标. 工程力学, 2021, 38(3):132 doi: 10.6052/j.issn.1000-4750.2020.05.0286 Lu Y F, Zhang L C, Zhang Y F, et al. Multi parameter evaluation index of progressive failure of landslide. Eng Mech, 2021, 38(3): 132 doi: 10.6052/j.issn.1000-4750.2020.05.0286
[18] 谭文辉, 谢谟文, 蔡美峰. 复杂边坡稳定性的二维与三维分析. 岩土力学, 2005, 26(增刊2):49 Tan W H, Xie M W, Cai M F. Two-dimensional and three-dimensional limit equilibrium analyses of complex slope stability. Rock Soil Mech, 2005, 26(Sup 2): 49
[19] 张震, 林宇亮, 何红忠, 等. 膨胀土边坡的失稳特征与稳定性分析. 中南大学学报(自然科学版), 2022, 53(1):104 doi: 10.11817/j.issn.1672-7207.2022.01.006 Zhang Z, Lin Y L, He H Z, et al. Instability characteristics and stability analysis of expansive soil slope. J Cent South Univ (Sci Technol), 2022, 53(1): 104 doi: 10.11817/j.issn.1672-7207.2022.01.006
[20] 王文才, 李俊鹏, 王创业, 等. 边帮煤采动影响下边坡变形演化特征及失稳形态分析. 煤炭科学技术, 2023, 51(7):321 Wang W C, Li J P, Wang C Y, et al. Analysis of failure mode and deformation evolution characteristics of slopes under the influence of highwall mining. Coal Sci Technol, 2023, 51(7): 321
[21] Zhou X P, Cheng H. Analysis of stability of three-dimensional slopes using the rigorous limit equilibrium method. Eng Geol, 2013, 160: 21 doi: 10.1016/j.enggeo.2013.03.027
[22] 苏振宁, 邵龙潭. 基于有限元极限平衡法的三维边坡稳定性. 工程科学学报, 2022, 44(12):2048 Su Z N, Shao L T. Three-dimensional slope stability based on the finite element limit equilibrium method. Chin J Eng, 2022, 44(12): 2048
[23] 肖术, 吴顺川, 高永涛, 等. 基于PEM–JFEM方法的节理岩质边坡稳定性评价. 工程科学学报, 2015, 37(7):844 Xiao S, Wu S C, Gao Y T, et al. Jointed rock slope stability evaluation based on PEM–JFEM method. Chin J Eng, 2015, 37(7): 844
[24] Wang X M, Xiao Y J, Shi W B, et al. Forensic analysis and numerical simulation of a catastrophic landslide of dissolved and fractured rock slope subject to underground mining. Landslides, 2022, 19(5): 1045 doi: 10.1007/s10346-021-01842-y
[25] 江巍, 闫金洲, 欧阳晔, 等. 边坡稳定性强度折减颗粒离散元法分析的细观参数标定策略. 工程科学与技术, 2023, 55(5):50 Jiang W, Yan J Z, Ouyang Y, et al. Calibration of micro parameters of particles in granular discrete element method to assess slope stability by strength reduction method. Adv Eng Sci, 2023, 55(5): 50
[26] 邓茂林, 许强, 郑光, 等. 基于离心模型试验的武隆鸡尾山滑坡形成机制研究. 岩石力学与工程学报, 2016, 35(增刊1):3024 Deng M L, Xu Q, Zheng G, et al. Study on the formation mechanism of Jiweishan landslide in Wulong, Chongqing, China-based on centrifugal model test. Chin J Rock Mech Eng, 2016, 35(Sup 1): 3024
[27] 许强, 邓茂林, 李世海, 等. 武隆鸡尾山滑坡形成机理数值模拟研究. 岩土工程学报, 2018, 40(11):2012 doi: 10.11779/CJGE201811007 Xu Q, Deng M L, Li S H, et al. Numerical simulation for formation of Jiweishan landslide in Wulong County, Chongqing City of China. Chin J Geotech Eng, 2018, 40(11): 2012 doi: 10.11779/CJGE201811007
[28] 殷跃平. 斜倾厚层山体滑坡视向滑动机制研究—以重庆武隆鸡尾山滑坡为例. 岩石力学与工程学报, 2010, 29(2):217 Yin Y P. Mechanism of apparent dip slide of inclined bedding rockslide—A case study of jiweishan rockslide in Wulong, Chongqing. Chin J Rock Mech Eng, 2010, 29(2): 217
[29] 许强, 黄润秋, 殷跃平, 等. 2009年6·5重庆武隆鸡尾山崩滑灾害基本特征与成因机理初步研究. 工程地质学报, 2009, 17(4):433 doi: 10.3969/j.issn.1004-9665.2009.04.001 Xu Q, Huang R Q, Yin Y P, et al. The jiweishan landslide of June 5, 2009 in Wulong, Chongqing: Characteristics and failure mechanism. J Eng Geol, 2009, 17(4): 433 doi: 10.3969/j.issn.1004-9665.2009.04.001
[30] Zou Z X, Tang H M, Xiong C R, et al. Kinetic characteristics of debris flows as exemplified by field investigations and discrete element simulation of the catastrophic Jiweishan rockslide, China. Geomorphology, 2017, 295: 1 doi: 10.1016/j.geomorph.2017.06.012
[31] Marschalko M, Yilmaz I, Bednárik M, et al. Influence of underground mining activities on the slope deformation genesis: Doubrava Vrchovec, Doubrava Ujala and Staric case studies from Czech Republic. Eng Geol, 2012, 147: 37
[32] 王田龙, 陈从新, 夏开宗, 等. 陡倾结构金属矿山采空区围岩破坏机制研究. 岩土力学, 2023, 44(5):1487 Wang T L, Chen C X, Xia K Z, et al. Failure mechanism of goaf surrounding rock with steeply dipping discontinuities in metal mine. Rock Soil Mech, 2023, 44(5): 1487
[33] 杜岩, 谢谟文, 吴志祥, 等. 平推式滑坡成因机制及其稳定性评价. 岩石力学与工程学报, 2019, 38(增刊1):2871 Du Y, Xie M W, Wu Z X, et al. Genetic mechanism about translational landslide and its safety evaluation. Chin J Rock Mech Eng, 2019, 38(Sup 1): 2871
[34] 杜岩, 张洪达, 谢谟文, 等. 大型危岩体崩塌灾害早期监测预警技术研究综述. 工程科学与技术, 2024, 56(5):10 Du Y, Zhang H D, Xie M W, et al. Review on the monitoring and early warning technology of large-scale unstable rock collapse. Adv Eng Sci, 2024, 56(5): 10
[35] 高杨, 殷跃平, 李壮, 等. 高位远程岩质滑坡动力解体效应研究. 岩石力学与工程学报, 2022, 41(10):1958 Gao Y, Yin Y P, Li Z, et al. Study on the dynamic disintegration effect of high position and long runout rock landslide. Chin J Rock Mech Eng, 2022, 41(10): 1958
[36] 李海军, 董建辉, 朱要强, 等. 贵州发耳煤矿尖山营滑坡特征及成因机制. 科学技术与工程, 2019, 19(26):345 doi: 10.3969/j.issn.1671-1815.2019.26.054 Li H J, Dong J H, Zhu Y Q, et al. Characteristics and genesis mechanism of Jianshanying landslide in Faer Coal Mine, Guizhou province. Sci Technol Eng, 2019, 19(26): 345 doi: 10.3969/j.issn.1671-1815.2019.26.054
[37] Du Y, Xie M W, Jia J L. Stepped settlement: A possible mechanism for translational landslides. Catena, 2020, 187: 104365 doi: 10.1016/j.catena.2019.104365
[38] 杜岩, 宁利泽, 谢谟文, 等. 考虑时间滞后效应的库岸滑坡位移预测. 武汉大学学报(信息科学版), 2024, 49(8):1347 Du Y, Ning L Z, Xie M W, et al. A prediction model of landslide displacement in reservoir area considering time lag effect. Geomat Inform Sci Wuhan Univ, 2024, 49(8): 1347
[39] 阮竹恩, 吴爱祥, 王贻明, 等. 全固废膏体关键性能指标的多目标优化. 工程科学学报, 2022, 44(4):496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004 Ruan Z E, Wu A X, Wang Y M, et al. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste. Chin J Eng, 2022, 44(4): 496 doi: 10.3321/j.issn.1001-053X.2022.4.bjkjdxxb202204004
-
期刊类型引用(2)
1. 文贤清. 开挖速度对赣南某高速公路强风化板岩高边坡稳定性影响研究. 价值工程. 2025(05): 4-6 . 百度学术
2. 管少杰,吕进国,王康,张砚力. 露天矿下伏采空区距坡脚水平距离对边坡稳定性的影响. 工矿自动化. 2025(02): 113-120 . 百度学术
其他类型引用(0)