电渣重熔易氧化元素控制的研究进展

Research progress on the control of reactive elements in remelted ingots during electroslag remelting process

  • 摘要: 电渣重熔是重要的二次精炼技术,不仅可以去除钢中杂质元素和非金属夹杂物,还可以改善铸锭的凝固组织进而提升钢的力学性能。若钢中含有易氧化合金元素,如Al、Ti、Si、B和稀土元素,会与CaF2-CaO-Al2O3基重熔渣系中的不稳定组元发生化学反应,造成合金元素沿铸锭高度方向分布不均匀现象。为抑制电渣重熔过程易氧化元素的烧损,在电渣重熔温度范围内,分析CaF2-CaO-Al2O3基重熔渣系中各个组元对钢中目标控制元素含量可以实现重熔渣系成分的准确设计。除了在重熔渣系中添加对应元素的氧化物之外,CaF2-CaO-Al2O3基重熔渣系中公共组元CaO和Al2O3以及温度对钢中不同合金元素含量的影响也并不相同。电渣重熔过程传质模型预报结果的准确性依赖于熔渣和钢液中组元的热力学活度、不同反应位置温度(电极端部、金属熔滴、渣池和金属熔池界面)、传质系数和几何参数的准确估计,但不同电渣重熔操作、重熔渣系成分和钢种对以上参数都有较大影响。由于准确估计不同反应位置处的反应温度和流体流动对传质系数的影响比较困难,因此相比较热力学分析,易氧化元素反应的动力学研究仍比较匮乏。重熔渣系物性参数对铸锭的表面和凝固质量同样有重要影响,目前对含TiO2、SiO2、B2O3和稀土氧化物的重熔渣系的物性参数研究主要集中在黏度和结晶能力等方面,但对其活度的实验室研究还未见报道。低氟重熔渣系的开发越来越受到关注,针对低氟重熔渣系条件下钢中易氧化元素控制的热力学、动力学和熔渣物性参数研究还有待于进一步开展。

     

    Abstract: Electroslag remelting (ESR) is an important secondary refining technique capable of removing impurity elements and non-metallic inclusions, improving the solidification structure of ingots, and enhancing the mechanical properties of the steel. When steel contains easily oxidizable alloying elements such as Al, Ti, Si, B, and rare earth elements, chemical reactions occur with unstable components in the CaF2-CaO-Al2O3-based ESR type slag system, leading to non-uniform distribution of alloying elements along the height of the ingot. To mitigate the oxidation loss of these elements during the ESR process, precise design of the slag composition in the CaF2-CaO-Al2O3-based ESR type slag system within the ESR temperature range enables accurate control of target elements in the steel. Apart from incorporating corresponding oxide additives into the ESR type slag system, the effects of common components like CaO and Al2O3, as well as temperature variations, on the content of different alloying elements in steel vary. The accuracy of mass transfer models during ESR depends on the precise estimation of thermodynamic activities of components in both slag and molten steel, temperatures at different reaction locations (electrode tip, metal droplet, interface between slag bath and metal pool), mass transfer coefficients, and geometric parameters. However, these parameters are significantly influenced by different ESR operations, slag compositions, and steel grades. Due to the difficulty in accurately estimating reaction temperatures and fluid flow effects on mass transfer coefficients at different reaction locations, kinetic studies of oxidation-prone elements remain relatively scarce compared to thermodynamic analyses. Physical parameters of the slag system also critically affect the surface and solidification quality of ingots. Current research on the physical parameters of remelting slag systems containing TiO2, SiO2, B2O3, and rare earth oxides mainly focuses on viscosity and crystallization ability, while laboratory studies on their activities are yet to be reported. The development of low-fluorine remelting slag systems is gaining attention, necessitating further research into the thermodynamic, kinetic, and slag physical parameters controlling oxidation-prone elements in such conditions.

     

/

返回文章
返回