基于非局部网络与通道注意力机制的颈动脉狭窄分类模型

Carotid Stenosis Classification Model Based on Non-local Networks and Channel Attention Mechanism

  • 摘要: 颈动脉狭窄是缺血性脑卒中的主要成因之一,目前数字减影造影技术(DSA)被称为颈动脉狭窄诊断的金标准,但传统的诊断方式需要由病理学家手动筛选分析DSA影像,存在着筛查速度慢、容易出错及对专业诊断人员的依赖等问题。人工智能为我们提供了辅助诊断手段。但目前的识别往往诊断出一处狭窄就完成识别,而实际影像有时存在不止一处的问题,为提高影像对多处狭窄的识别能力,本文提出了一个非局部通道注意力网络(Non-Local Channel Attention Net,NLCANet)对颈动脉狭窄进行准确分类。该模型主要由两个模块构成:非局部多尺度特征融合模块(Non Local Multi-Scale Fusion module,NLMSF)和通道注意力模块(Multi-Level Channel Attention module,MLCA)。非局部多尺度特征融合模块NLMSF利用非局部网络的思想来模拟空间注意力操作,同时,为了更好的提取多尺度特征,在非局部网络中还加入了多尺度特征融合的模块,对颈动脉影像分类起到重要作用;通道注意力模块MLCA通过高效的利用影像中的通道特征,为模型分类提供了更多的语义信息。我们通过使用提取关键帧的技术,建立颈动脉狭窄数据集,将本文模型与其他主流的医学影像分类模型在该颈动脉狭窄数据集上进行对比。我们的模型达到了最好的效果,模型的分类准确率要高于其他主流的模型至少2%。

     

    Abstract: Carotid artery stenosis is one of the primary causes of ischemic stroke. Currently, digital subtraction angiography (DSA) is considered the gold standard for diagnosing carotid stenosis. However, traditional diagnostic methods require pathologists to manually screen and analyze DSA images, which are slow and prone to errors. To address this, we have developed a carotid stenosis dataset using key frame extraction technology. While general models for image classification have excelled in the field of computer vision, there is still significant potential for growth in models classifying medical images. Therefore, we propose a Non-Local Channel Attention Network (NLCANet) to assist in the accurate classification of carotid stenosis. The NLCANet primarily consists of two modules: the Non-Local Multi-Scale Fusion module (NLMSF), which utilizes the concept of non-local networks to simulate spatial attention operations, and incorporates a multi-scale fusion module to enhance feature extraction across different scales, playing a crucial role in classifying carotid images; and the Efficient Channel Attention (ECA) module, which effectively utilizes the channel features of images to provide additional semantic information for classification. We compared NLCANet with other mainstream medical image classification models on our carotid stenosis dataset. Our model achieved the best results, with a classification accuracy at least 2% higher than other mainstream models.

     

/

返回文章
返回