基于物理信息神经网络的锂离子电池温度预测研究

Experimental study on large-rate discharge immersion cooling system of pouch battery pack

  • 摘要: 准确的温度监测对电动汽车、机器人及储能系统中动力电池的热安全管理至关重要。针对现有传感器与电热建模技术难以快速获取大尺寸电池整体温度分布的问题,本文提出一种基于物理信息神经网络(PINN)的电池温度场建模方法。该模型融合电池热建模与深度学习技术,实现无温度传感器工况下电池系统时空温度分布的实时监测。关键创新之处在于基于实验数据构建电池物理模型,耦合电池产热率方程与数据驱动的非线性映射,增强了预测精度,一个训练良好的模型可以用不使用传感器预测整个电池内的温度分布。实验结果表明,在不同的恒流充放电与随机电流动态工况下,该模型温度预测的最大均方根误差(RMSE)与平均绝对误差(MAE)均低于0.9 ℃。相较于传统方法,本模型在有限训练数据条件下显著提升预测精度与可解释性,为电池管理系统提供高精度温度分布依据,对热安全策略制定具有重要应用价值。

     

    Abstract: Accurate Accurate temperature monitoring is crucial for ensuring the thermal safety and performance of lithium-ion batteries (LIBs), which are extensively used in electric vehicles, robotics, and energy storage systems. The optimal operating temperature for LIBs is strictly confined between 20°C and 40°C. Temperatures outside this range can lead to performance degradation, capacity loss, accelerated aging, or even thermal runaway. Conventional methods, such as sensor-based measurements and electrothermal modeling, face challenges in providing rapid and comprehensive temperature distribution data for large-format batteries due to spatial and cost limitations, which hinder sensor deployment. To address these challenges, this study introduces a novel temperature field modeling and reconstruction approach for ternary lithium batteries using Physics-Informed Neural Networks (PINNs). This method integrates battery thermal modeling with deep learning techniques, enabling real-time, sensor-free monitoring of spatiotemporal temperature distributions within the battery system.

     

/

返回文章
返回