数字孪生技术在材料服役评价中的应用

* 通信作者,E-mail: wdzhang@ustb.edu.cn, ybai@ustb.edu.cn

  • 摘要: 材料服役评价涵盖了材料性能表征、失效分析、剩余寿命预测等多个方面,对于保障重大工程装备的安全服役和维保策略优化意义重大。随着材料性能的提升和服役环境的日益复杂化,传统的材料服役评价方法在实时性、精准性和智能化等方面存在一定的局限性。数字孪生作为融合物理模型、数据驱动模型与实时监测的前沿技术,为材料服役状态的实时动态感知与服役性能精准预测提供了新的解决方案。在材料服役过程中,腐蚀、疲劳和断裂是三种最典型的失效形式,一旦发生将直接影响重大工程与装备的服役安全。本文首先系统综述了数字孪生技术在针对上述三种典型失效形式的服役评价研究中的应用进展。随后,深入分析了用于材料服役评价的多源数据融合、多尺度建模、实时数据传输、服役评价模型构建等数字孪生关键技术的研究现状。最后,对用于材料服役评价的数字孪生技术存在的问题及未来发展趋势进行了展望。

     

    Abstract: Materials service evaluation encompasses multiple aspects including performance characterization, failure analysis, and remaining life prediction, playing a crucial role in ensuring the safe operation of major engineering equipment and optimizing maintenance strategies. As the service environments of materials in key engineering fields such as aerospace, nuclear energy, and transportation become increasingly complex, traditional materials in-service evaluation methods exhibit certain limitations in terms of real-time capability, accuracy, and intelligence. Digital twin technology offers a novel solution by integrating physical models, data-driven approaches, and real-time monitoring. This technology enables dynamic assessment of material service conditions and performance prediction. Among various failure modes during service, corrosion, fatigue, and fracture are the most prevalent. These modes directly impact the operational safety of critical infrastructure and equipment. This paper first systematically reviews the application progress of digital twin technology in the research of these three typical failure modes. Subsequently, focusing on the challenges faced by digital twins for materials in-service evaluation, it provides an in-depth analysis of the research status of key technologies including multi-source data fusion, multi-scale modeling, real-time data transmission, and service evaluation model construction. Finally, the future development trends of digital twins for materials in-service evaluation are discussed.

     

/

返回文章
返回