[1] Dragt B J, Camisani-Calzolari F R, Craig I K. An overview of the automation of load-haul-dump vehicles in an underground mining environment. IFAC Proc Vol, 2005, 38(1): 37
[2] Polotski V, Hemami A. Control of articulated vehicle for mining applications: modeling and laboratory experiments // Proceedings of the 1997 IEEE International Conference on Control Applications. Hartford, 1997: 318
[3] Polotski V. New reference point for guiding an articulated vehicle // Proceedings of the 2000 IEEE International Conference on Control Applications. Anchorage, 2000: 455
[4] DeSantis R M. Modeling and path-tracking for a load-haul-dump mining vehicle. J Dyn Syst Meas Control, 1997, 119(1): 40
[5] Petrov P, Bigras P. A practical approach to feedback path control for an articulated mining vehicle // Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui, 2001: 2258
[6] Bigras P, Petrov P, Wong T. A LMI approach to feedback path control for an articulated mining vehicle[J/OL]. Electrimacs (2002-08-18)[2020-07-10]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=0E4BF7E2F4D6D72E947388D6E3000594?doi=10.1.1.93.6794&rep=rep1&type=pdf
[7] Sasiadek J Z, Lu Y. Path tracking of an autonomous LHD articulated vehicle. IFAC Proc Vol, 2005, 38(1): 55
[8] Altafini C. Why to use an articulated vehicle in underground mining operations? // Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C). Detroit, 1999: 3020
[9] Corke P I, Ridley P. Steering kinematics for a center-articulated mobile robot. IEEE Trans Robot Autom, 2001, 17(2): 215
[10] Bai G X, Liu L, Meng Y, et al. Path tracking of mining vehicles based on nonlinear model predictive control. Appl Sci, 2019, 9(7): 1372
[11] Ridley P, Corke P. Load haul dump vehicle kinematics and control. J Dyn Syst Meas Control, 2003, 125(1): 54
[12] Marshall J, Barfoot T, Larsson J. Autonomous underground tramming for center-articulated vehicles. J Field Robot, 2008, 25(6-7): 400
[13] Zhao X, Yang J, Zhang W M, et al. Feedback linearization control for path tracking of articulated dump truck. Telkomnika, 2015, 13(3): 922
[14] 赵翾, 杨珏, 张文明, 等. 农用轮式铰接车辆滑模轨迹跟踪控制算法. 农业工程学报, 2015, 31(10):198 doi: 10.11975/j.issn.1002-6819.2015.10.026

Zhao X, Yang J, Zhang W M, et al. Sliding mode control algorithm for path tracking of articulated dump truck. Trans Chin Soc Agric Eng, 2015, 31(10): 198 doi: 10.11975/j.issn.1002-6819.2015.10.026
[15] 邵俊恺, 赵翾, 杨珏, 等. 无人驾驶铰接式车辆强化学习路径跟踪控制算法. 农业机械学报, 2017, 48(3):376 doi: 10.6041/j.issn.1000-1298.2017.03.048

Shao J K, Zhao X, Yang J, et al. Reinforcement learning algorithm for path following control of articulated vehicle. Trans Chin Soc Agric Mach, 2017, 48(3): 376 doi: 10.6041/j.issn.1000-1298.2017.03.048
[16] Bian Y M, Yang M, Fang X J, et al. Kinematics and path following control of an articulated drum roller. Chin J Mech Eng, 2017, 30(4): 888
[17] Tan S Q, Zhao X X, Yang J, et al. A path tracking algorithm for articulated vehicle: Development and simulations // 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific). Harbin, 2017: 1
[18] 孟宇, 汪钰, 顾青, 等. 基于预见位姿信息的铰接式车辆 LQR-GA 路径跟踪控制. 农业机械学报, 2018, 49(6):375 doi: 10.6041/j.issn.1000-1298.2018.06.045

Meng Y, Wang Y, Gu Q, et al. LQR-GA path tracking control of articulated vehicle based on predictive information. Trans Chin Soc Agric Mach, 2018, 49(6): 375 doi: 10.6041/j.issn.1000-1298.2018.06.045
[19] Meng Y, Gan X, Wang Y, et al. LQR-GA controller for articulated dump truck path tracking system. J Shanghai Jiaotong Univ (Sci), 2019, 24(1): 78
[20] Dekker L G, Marshall J A, Larsson J. Experiments in feedback linearized iterative learning-based path following for center-articulated industrial vehicles. J Field Robot, 2019, 36(5): 955
[21] Scheding S, Dissanayake G, Nebot E, et al. Slip modelling and aided inertial navigation of an LHD // Proceedings of International Conference on Robotics and Automation. Albuquerque, 1997: 1904
[22] Scheding S, Dissanayake G, Nebot E M, et al. An experiment in autonomous navigation of an underground mining vehicle. IEEE Trans Robot Autom, 1999, 15(1): 85
[23] Nayl T, Nikolakopoulos G, Gustafsson T. Kinematic modeling and simulation studies of a LHD vehicle under slip angles // Proceedings of the IASTED international conference on modelling, simulation, and identification. Pittsburgh 2011: 344
[24] Nayl T, Nikolakopoulos G, Gustafsson T. Switching model predictive control for an articulated vehicle under varying slip angle // 2012 20th Mediterranean Conference on Control & Automation (MED). Barcelona, 2012: 890
[25] Nayl T, Nikolakopoulos G, Gustafsson T. Path following for an articulated vehicle based on switching model predictive control under varying speeds and slip angles // Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012). Krakow, 2012: 1
[26] Nayl T, Nikolakopoulos G, Gustafsson T. A full error dynamics switching modeling and control scheme for an articulated vehicle. Int J Control Autom Syst, 2015, 13(5): 1221
[27] 冯金芝, 喻凡, 李君. 基于虚拟样机技术的铰接式车辆动力学建模. 上海理工大学学报, 2004, 26(4):372 doi: 10.3969/j.issn.1007-6735.2004.04.020

Feng J Z, Yu F, Li J. Study of an articulated vehicle dynamic modeling based on virtual environment. J Univ Shanghai Sci Technol, 2004, 26(4): 372 doi: 10.3969/j.issn.1007-6735.2004.04.020
[28] Dudziński P, Skurjat A. Directional dynamics problems of an articulated frame steer wheeled vehicles. J KONES, 2015, 19(1): 89
[29] 申焱华, 韩丽, 金纯. 铰接式电动轮原地转向动力学联合仿真分析. 系统仿真学报, 2013, 25(7):1691

Shen Y H, Han L, Jin C. Co-simulation analysis of in-situ steering dynamics of articulated motor-driven vehicle. J Syst Simul, 2013, 25(7): 1691
[30] He Y, Khajepour A, McPhee J, et al. Dynamic modelling and stability analysis of articulated frame steer vehicles. Int J Heavy Veh Syst, 2005, 12(1): 28
[31] 高建明, 王同建, 徐进勇, 等. 铰接式装载机转向运动学动力学仿真与试验研究. 建筑机械, 2005(4):63 doi: 10.3969/j.issn.1001-554X.2005.04.020

Gao J M, Wang T J, Xu J Y, et al. Simulation and experimental research on steering kinematics and dynamics of articulated loaders. Constr Mach, 2005(4): 63 doi: 10.3969/j.issn.1001-554X.2005.04.020
[32] 汪建春. 铰接式车辆原地转向动态数学模型. 建筑机械, 2008(6):86 doi: 10.3969/j.issn.1001-554X.2008.06.016

Wang J C. Dynamical mathematical model of in situ steering of articulated vehicles. Constr Mach, 2008(6): 86 doi: 10.3969/j.issn.1001-554X.2008.06.016
[33] 汪建春. 铰接式车辆原地转向阻力矩计算及力学模型讨论. 矿山机械, 2008, 36(21):53

Wang J C. Mechanical model discussion and in-situ steering resistance moment computation of articulated vehicles. Min Process Equip, 2008, 36(21): 53
[34] 陈永峰. 铰接式防爆胶轮车转向运动学动力学分析与试验. 煤炭科学技术, 2012, 40(7):66

Chen Y F. Analysis and experiment on steering kinematics and dynamics of flame proof rubber tyre articulated vehicle. Coal Sci Technol, 2012, 40(7): 66
[35] 张涛, 张福生, 张高峰, 等. 基于MATLAB铰接式车辆原地转向特性的研究. 现代机械, 2014(3):22

Zhang T, Zhang F S, Zhang G F, et al. A research on in-situ steering characteristics of articulated vehicle based on MATLAB. Mod Mach, 2014(3): 22
[36] Xu T, Shen Y, Zhang W. In-situ steering dynamics analysis of skid steering for articulated motor-driven vehicle. SAE Int J Passeng Cars-Mech Syst, 2016, 9(2): 903
[37] 崔胜民, 张京明, 张为春. 铰接式车辆稳态转向特性. 拖拉机与农用运输车, 1995(3):43

Cui S M, Zhang J M, Zhang W C. Steady-state steering characteristics of articulated vehicles. Tract Farm Transp, 1995(3): 43
[38] Azad N, Khajepour A, McPhee J. Stability control of articulated steer vehicles by passive and active steering systems. SAE Technical Paper, 2005: 2005-01-3573 doi: 10.4271/2005-01-3573
[39] Azad N, McPhee J, Khajepour A. Tire forces and moments and on-road lateral stability of articulated steer vehicles. SAE Technical Paper, 2005: 2005-01-3597 doi: 10.4271/2005-01-3597
[40] Azad N L. Dynamic Modelling and Stability Controller Development for Articulated Steer Vehicles[Dissertation]. University of Waterloo, 2006
[41] 汪建春, 刘旺. 铰接式车辆对扰动的瞬态和稳态响应(上). 矿山机械, 2008, 36(9):26

Wang J C, Liu W. Transient and steady responses of articulated vehicles to disturbance moment(I). Min Process Equip, 2008, 36(9): 26
[42] 汪建春, 刘旺. 铰接式车辆对扰动的瞬态和稳态响应(下). 矿山机械, 2008, 36(11):35

Wang J C, Liu W. Transient and steady responses of articulated vehicles to disturbance moment (Ⅱ). Min Process Equip, 2008, 36(11): 35
[43] Iida M, Fukuta M, Tomiyama H. Measurement and analysis of side-slip angle for an articulated vehicle. Eng Agric Environ Food, 2010, 3(1): 1
[44] Iida M, Nakashima H, Tomiyama H, et al. Small-radius turning performance of an articulated vehicle by direct yaw moment control. Comput Electron Agric, 2011, 76(2): 277
[45] Rehnberg A, Edrén J, Eriksson M, et al. Scale model investigation of the snaking and folding stability of an articulated frame steer vehicle. Int J Veh Syst Modell Test, 2011, 6(2): 126
[46] Pazooki A, Rakheja S, Cao D P. A three-dimensional model of an articulated frame-steer vehicle for coupled ride and handling dynamic analyses. Int J Veh Perform, 2015, 1(3-4): 264
[47] Pazooki A, Rakheja S, Cao D P. Kineto-dynamic directional response analysis of an articulated frame steer vehicle. Int J Veh Des, 2014, 65(1): 1
[48] 周国建. 铰接式铲运机转向及横向稳定动态数学模型. 矿山机械, 1992(11):9

Zhou G J. Steering and lateral stability dynamic mathematical model of articulated scraper. Min Process Equip, 1992(11): 9
[49] 周国建. 铲运机转向动态数学模型. 矿业研究与开发, 1993, 13(4):31

Zhou G J. Dynamic mathematical model of LHD steering. Min Res Dev, 1993, 13(4): 31
[50] Azad N, Khajepour A, Mcphee J. Robust state feedback stabilization of articulated steer vehicles. Veh Syst Dyn, 2007, 45(3): 249
[51] Dou F Q, Liu W, Huang Y J, et al. Modeling and path tracking for articulated steering vehicles// 2017 Chinese Automation Congress (CAC). Jinan, 2017: 5263
[52] 窦凤谦. 地下矿用铰接车辆路径跟踪与智能避障控制研究[学位论文]. 北京: 北京科技大学, 2018

Dou F Q. Research on Path Tracking and Obstacles Avoidance for Autonomous Underground Mining Articulated Vehicles [Dissertation]. Beijing: University of Science and Technology Beijing, 2018
[53] Gao Y, Shen Y H, Xu T, et al. Oscillatory yaw motion control for hydraulic power steering articulated vehicles considering the influence of varying bulk modulus. IEEE Trans Control Syst Technol, 2019, 27(3): 1284
[54] 刘刚, 张子达, 邹广德, 等. 铰接车辆行驶稳定性的动力学建模. 工程机械, 1996(8):5

Liu G, Zhang Z D, Zou G D, et al. Dynamics model establishment for travel stability of articulated vehicles. Constr Mach Equip, 1996(8): 5
[55] 葛强胜, 郭刚, 华瑞平, 等. 铰接式车辆转向及横向动态数学模型. 矿山机械, 2000, 28(6):29

Ge Q S, Guo G, Hua R P, et al. Dynatdic mathematical model of steering and horizontal swing for athculated vehicles. Min Process Equip, 2000, 28(6): 29
[56] 葛强胜. 铰接式车辆高速直线行驶动态仿真. 农业机械学报, 2003, 34(4):39 doi: 10.3969/j.issn.1000-1298.2003.04.012

Ge Q S. Simulation of high-speed and straight-line traveling dynamic characteristics of articulated vehicles. Trans Chin Soc Agric Mach, 2003, 34(4): 39 doi: 10.3969/j.issn.1000-1298.2003.04.012
[57] Alshaer B J, Darabseh T T, Momani A Q. Modelling and control of an autonomous articulated mining vehicle navigating a predefined path. Int J Heavy Veh Syst, 2014, 21(2): 152
[58] Hemami A, Polotski V. Problem formulation for path tracking automation of low speed articulated vehicles // Proceeding of the 1996 IEEE International Conference on Control Applications. Dearborn, 1996: 697
[59] Hemami A, Polotski V. Path tracking control problem formulation of an LHD loader. Int J Robot Res, 1998, 17(2): 193
[60] Nayl T, Nikolakopoulos G, Gustafsson T, et al. Design and experimental evaluation of a novel sliding mode controller for an articulated vehicle. Robot Autonom Syst, 2018, 103: 213
[61] 刘金琨. 滑模变结构控制MATLAB仿真 (第3版) 基本理论与设计方法. 北京: 清华大学出版社, 2015

Liu J K. Sliding Mode Control Design and MATLAB Simulation (3rd Ed) the Basic Theory and Design Method. Beijing: Tsinghua University Press, 2015
[62] 刘金琨. 智能控制. 4版. 北京: 电子工业出版社, 2017

Liu J K. Intelligent Control. 4th Ed. Beijing: Electronic Industry Press, 2017
[63] Consolini L, Piazzi A, Tosques M. A dynamic inversion based controller for path following of car-like vehicles. IFAC Proc Vol, 2002, 35(1): 49
[64] Kapania N R, Gerdes J C. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling. Veh Syst Dyn, 2015, 53(12): 1687
[65] 陈虹. 模型预测控制. 北京: 科学出版社, 2013

Chen H. Model Predictive Control. Beijing: Science Press, 2013
[66] 孟宇, 甘鑫, 白国星. 基于预瞄距离的地下矿用铰接车路径跟踪预测控制. 工程科学学报, 2019, 41(5):662

Meng Y, Gan X, Bai G X. Path following control of underground mining articulated vehicle based on the preview control method. Chin J Eng, 2019, 41(5): 662
[67] 罗维东, 马宝全, 孟宇, 等. 基于NMPC的地下无人铲运机反应式导航系统. 煤炭学报, 2020, 45(4):1536

Luo W D, Ma B Q, Meng Y, et al. Reactive navigation system of underground unmanned Load-Haul-Dump unit based on NMPC. J China Coal Soc, 2020, 45(4): 1536
[68] Bai G X, Meng Y, Liu L, et al. Review and comparison of path tracking based on model predictive control. Electronics, 2019, 8(10): 1077
[69] 顾青, 白国星, 孟宇, 等. 基于非线性模型预测控制的自动泊车路径跟踪. 工程科学学报, 2019, 41(7):947

Gu Q, Bai G X, Meng Y, et al. Path tracking of automatic parking based on nonlinear model predictive control. Chin J Eng, 2019, 41(7): 947
[70] Bai G X, Liu L, Meng Y, et al. Path tracking of wheeled mobile robots based on dynamic prediction model. IEEE Access, 2019, 7: 39690
[71] Bai G X, Meng Y, Liu L, et al. A new path tracking method based on multilayer model predictive control. Appl Sci, 2019, 9(13): 2649
[72] Falcone P, Tseng H E, Asgari J, et al. Integrated braking and steering model predictive control approach in autonomous vehicles. IFAC Proc Vol, 2007, 40(10): 273
[73] Falcone P, Tufo M, Borrelli F, et al. A linear time varying model predictive control approach to the integrated vehicle dynamics control problem in autonomous systems // 2007 46th IEEE Conference on Decision and Control. New Orleans, 2007: 2980
[74] Barbarisi O, Palmieri G, Scala S, et al. LTV-MPC for yaw rate control and side slip control with dynamically constrained differential braking. Eur J Control, 2009, 15(3-4): 468
[75] Meola D, Gambino G, Palmieri G, et al. A comparison between LTV-MPC and LQR yaw rate-side slip controller. IFAC Proc Vol, 2009, 42(26): 154
[76] Ataei M, Khajepour A, Jeon S. Model predictive control for integrated lateral stability, traction/braking control, and rollover prevention of electric vehicles. Veh Syst Dyn, 2020, 58(1): 49