[1] Xu X X, You G Q, Ding Y H, et al. Microstructure and mechanical properties of inertia friction welded joints between high-strength low-alloy steel and medium carbon steel. J Mater Process Technol, 2020, 286: 116811 doi: 10.1016/j.jmatprotec.2020.116811
[2] 张晓刚. 近年来低合金高强度钢的进展. 钢铁, 2011, 46(11):1

Zhang X G. Development of high strength low alloy steel in recent years. Iron Steel, 2011, 46(11): 1
[3] Jiang S H, Wang H, Wu Y, et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544(7651): 460 doi: 10.1038/nature22032
[4] Kim H J, Jeon S H, Yang W S, et al. Effects of titanium content on hydrogen embrittlement susceptibility of hot-stamped boron steels. J Alloys Compd, 2018, 735: 2067 doi: 10.1016/j.jallcom.2017.12.004
[5] Li L F, Song B, Cheng J, et al. Effects of vanadium precipitates on hydrogen trapping efficiency and hydrogen induced cracking resistance in X80 pipeline steel. Int J Hydrogen Energy, 2018, 43(36): 17353 doi: 10.1016/j.ijhydene.2018.07.110
[6] 雍岐龙, 孙新军, 郑磊, 等. 钢铁材料中第二相的作用. 科技创新导报, 2009(8):2 doi: 10.3969/j.issn.1674-098X.2009.08.002

Yong Q L, Sun X J, Zheng L, et al. Roles of second phases in structural steels. Sci Technol Innov Herald, 2009(8): 2 doi: 10.3969/j.issn.1674-098X.2009.08.002
[7] Wei H, Chen Y L, Yu W, et al. Study on corrosion resistance of high-strength medium-carbon spring steel and its hydrogen-induced delayed fracture. Constr Build Mater, 2020, 239: 117815 doi: 10.1016/j.conbuildmat.2019.117815
[8] 黄耀, 赵爱民, 程永峰, 等. 低碳钢中纳米尺寸碳化物的相间析出行为. 工程科学学报, 2015, 37(7):896

Huang Y, Zhao A M, Cheng Y F, et al. Interphase precipitation behavior of nano-sized carbides in low carbon steel. Chin J Eng, 2015, 37(7): 896
[9] Wang Y Q, Clark S J, Janik V, et al. Investigating nano-precipitation in a V-containing HSLA steel using small angle neutron scattering. Acta Mater, 2018, 145: 84 doi: 10.1016/j.actamat.2017.11.032
[10] Park T M, Kim H J, Um H Y, et al. The possibility of enhanced hydrogen embrittlement resistance of medium-Mn steels by addition of micro-alloying elements. Mater Charact, 2020, 165: 110386 doi: 10.1016/j.matchar.2020.110386
[11] Ma J, Zhang B, Wang J Q, et al. Anisotropic 3D growth of corrosion pits initiated at MnS inclusions for A537 steel during corrosion fatigue. Corros Sci, 2010, 52(9): 2867 doi: 10.1016/j.corsci.2010.04.036
[12] Mohammed S, Hua Y, Barker R, et al. Investigating pitting in X65 carbon steel using potentiostatic polarisation. Appl Surf Sci, 2017, 423: 25 doi: 10.1016/j.apsusc.2017.06.015
[13] Zhang B, Ma X L. A review‒Pitting corrosion initiation investigated by TEM. J Mater Sci Technol, 2019, 35(7): 1455 doi: 10.1016/j.jmst.2019.01.013
[14] Hao W K, Liu Z Y, Wu W, et al. Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments. Mater Sci Eng A, 2018, 710: 318 doi: 10.1016/j.msea.2017.10.042
[15] Hur D H, Han J H, Lee U C, et al. Microchemistry of Ti-carbonitrides and their role in the early stage of pit initiation of Alloy 600. Corrosion, 2006, 62(7): 591 doi: 10.5006/1.3280673
[16] Tan J B, Wu X Q, Han E H, et al. Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water. Corros Sci, 2014, 88: 349 doi: 10.1016/j.corsci.2014.07.059
[17] 段修刚, 蔡庆伍, 武会宾. Ti‒Mo全铁素体基微合金高强钢纳米尺度析出相. 金属学报, 2011, 47(2):251

Duan X G, Cai Q W, Wu H B. Ti‒Mo ferrite matrix micro-alloy steel with nanometer-sized precipitates. Acta Metall Sin, 2011, 47(2): 251
[18] Chen C Y, Chen S F, Chen C C, et al. Control of precipitation morphology in the novel HSLA steel. Mater Sci Eng A, 2015, 634: 123 doi: 10.1016/j.msea.2015.03.027
[19] Xie Z J, Ma X P, Shang C J, et al. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel. Mater Sci Eng A, 2015, 641: 37 doi: 10.1016/j.msea.2015.05.101
[20] Meng F J, Wang J Q, Han E H, et al. The role of TiN inclusions in stress corrosion crack initiation for Alloy 690TT in high-temperature and high-pressure water. Corros Sci, 2010, 52(3): 927 doi: 10.1016/j.corsci.2009.11.015
[21] Rahnama A, Clark S, Sridhar S. Machine learning for predicting occurrence of interphase precipitation in HSLA steels. Comput Mater Sci, 2018, 154: 169 doi: 10.1016/j.commatsci.2018.07.055
[22] Chang S H, Yeh P T, Huang K T. Microstructures, mechanical properties and corrosion behaviors of NbC added to Vanadis 4 tool steel via vacuum sintering and heat treatments. Vacuum, 2017, 142: 123 doi: 10.1016/j.vacuum.2017.05.015
[23] Zhang S Q, Fan E D, Wan J F, et al. Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel. Corros Sci, 2018, 139: 83 doi: 10.1016/j.corsci.2018.04.041
[24] 左龙飞, 倪锐, 王自东, 等. 低碳高强钢中纳米析出相回火过程中的透射分析. 钢铁研究学报, 2013, 25(3):39

Zuo L F, Ni R, Wang Z D, et al. Nano-precipitates in low carbon high strength steel during thr tempering process. J Iron Steel Res, 2013, 25(3): 39
[25] 雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006

Yong Q L. Second Phases in Structural Steels. Beijing: Metallurgical Industry Press, 2006
[26] Grabke H J, Riecke E. Absorption and diffusion of hydrogen in steels. Mater Tehnol, 2000, 34(6): 331
[27] Sojka J, Vodárek V, Schindler I, et al. Effect of hydrogen on the properties and fracture characteristics of TRIP 800 steels. Corros Sci, 2011, 53(8): 2575 doi: 10.1016/j.corsci.2011.04.015
[28] Grabke H J, Gehrmann F, Riecke E. Hydrogen in microalloyed steels. Steel Res Int, 2001, 72(5-6): 225 doi: 10.1002/srin.200100110
[29] Ghosh G, Rostron P, Garg R, et al. Hydrogen induced cracking of pipeline and pressure vessel steels: A review. Eng Fract Mech, 2018, 199: 609 doi: 10.1016/j.engfracmech.2018.06.018
[30] Stefano D D, Mrovec M, Elsässer C. First-principles investigation of quantum mechanical effects on the diffusion of hydrogen in iron and nickel. Phys Rev B, 2015, 92: 224301 doi: 10.1103/PhysRevB.92.224301
[31] Lee J Y, Lee S M. Hydrogen trapping phenomena in metals with B. C. C. and F. C. C. crystals structures by the desorption thermal analysis technique. Surf Coat Technol, 1986, 28(3-4): 301 doi: 10.1016/0257-8972(86)90087-3
[32] Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials. Int J Hydrogen Energy, 2019, 44(51): 28007 doi: 10.1016/j.ijhydene.2019.08.149
[33] 褚武扬, 乔利杰, 李金许, 等. 氢脆和应力腐蚀‒基础部分. 北京: 科学出版社, 2013

Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittle and Stress Corrosion Cracking‒Basic Part. Beijing: Science Press, 2013
[34] Robertson W M, Thompson A W. Permeation measurements of hydrogen trapping in 1045 steel. Metall Trans A, 1980, 11(4): 553 doi: 10.1007/BF02670691
[35] Liu M A, Rivera-Díaz-del-Castillo P E J, Barraza-Fierroa J I, et al. Microstructural influence on hydrogen permeation and trapping in steels. Mater Des, 2019, 167: 107605 doi: 10.1016/j.matdes.2019.107605
[36] Wallaert E, Depover T, Arafin M, et al. Thermal desorption spectroscopy evaluation of the hydrogen-trapping capacity of NbC and NbN precipitates. Metall Mater Trans A, 2014, 45(5): 2412 doi: 10.1007/s11661-013-2181-1
[37] Pressouyre G M, Bernstein I M. A quantitative analysis of hydrogen trapping. Metall Trans A, 1978, 9(11): 1571 doi: 10.1007/BF02661939
[38] Pressouyre G M, Bernstein I M. An example of the effect of hydrogen trapping on hydrogen embrittlement. Metall Trans A, 1981, 12(5): 835 doi: 10.1007/BF02648348
[39] Restrepo S E, Stefano D D, Mrovec M, et al. Density functional theory calculations of iron‒vanadium carbide interfaces and the effect of hydrogen. Int J Hydrogen Energy, 2020, 45(3): 2382 doi: 10.1016/j.ijhydene.2019.11.102
[40] Ma Y, Shi Y F, Wang H Y, et al. A first-principles study on the hydrogen trap characteristics of coherent nano-precipitates in α-Fe. Int J Hydrogen Energ, 2020, 45(51): 27941 doi: 10.1016/j.ijhydene.2020.07.123
[41] Wei J, Dong J H, Ke W, et al. Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution. Corrosion, 2015, 71(12): 1467 doi: 10.5006/1837
[42] Avci R, Davis B H, Wolfenden M L, et al. Mechanism of MnS-mediated pit initiation and propagation in carbon steel in an anaerobic sulfidogenic media. Corros Sci, 2013, 76: 267 doi: 10.1016/j.corsci.2013.06.049
[43] Lee J, Lee T, Mun D J, et al. Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel. Sci Rep, 2019, 9: 5219 doi: 10.1038/s41598-019-41436-2
[44] Wei F G, Tsuzaki K. Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall Mater Trans A, 2006, 37(2): 331 doi: 10.1007/s11661-006-0004-3
[45] Sawada H, Taniguchi S, Kawakami K, et al. Transition of the interface between iron and carbide precipitate from coherent to semi-coherent. Metals, 2017, 7(7): 277 doi: 10.3390/met7070277
[46] Wei F G, Hara T, Tsuzaki K. Nano-preciptates design with hydrogen trapping character in high strength steel//Advanced Steels. Berlin: Springer-Verlag Berlin Heidelberg and Metallurgical Industry Press, 2011
[47] Shi R J, Ma Y, Wang Z D, et al. Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces. Acta Mater, 2020, 200: 686 doi: 10.1016/j.actamat.2020.09.031
[48] Lin Y C, McCarroll I E, Lin Y T, et al. Hydrogen trapping and desorption of dual precipitates in tempered low-carbon martensitic steel. Acta Mater, 2020, 196: 516 doi: 10.1016/j.actamat.2020.06.046
[49] Zhang S Q, Wan J F, Zhao Q Y, et al. Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel. Corros Sci, 2020, 164: 108345 doi: 10.1016/j.corsci.2019.108345
[50] Chen Y S, Lu H Z, Liang J T, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates. Science, 2020, 367(6474): 171
[51] Takahashi J, Kawakami K, Kobayashi Y, et al. The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scripta Mater, 2010, 63(3): 261 doi: 10.1016/j.scriptamat.2010.03.012
[52] 翁镭, 吴红艳, 杜林秀. 含Ti耐候钢在海洋环境中的腐蚀行为. 热加工工艺, https://doi.org/10.14158/j.cnki.1001-3814.20192685

Weng L, Wu H Y, Du L X. Corrosion behavior of Ti-containing weathering steel in marine environment. Hot Work Technol, https://doi.org/10.14158/j.cnki.1001-3814.20192685
[53] Ghosh S, Singh A K, Mula S, et al. Mechanical properties, formability and corrosion resistance of thermomechanically controlled processed Ti‒Nb stabilized IF steel. Mater Sci Eng A, 2017, 684: 22 doi: 10.1016/j.msea.2016.12.034
[54] Zhang X, Wei W Z, Cheng L, et al. Effects of niobium and rare earth elements on microstructure and initial marine corrosion behavior of low-alloy steels. Appl Surf Sci, 2019, 475: 83 doi: 10.1016/j.apsusc.2018.12.243
[55] Wang Z H, Wu J S, Li J, et al. Effects of niobium on the mechanical properties and corrosion behavior of simulated weld HAZ of HSLA steel. Metall Mater Trans A, 2018, 49(1): 187 doi: 10.1007/s11661-017-4391-4
[56] Suter T, Böhni H. A new microelectrochemical method to study pit initiation on stainless steels. Electrochim Acta, 1997, 42(20-22): 3275 doi: 10.1016/S0013-4686(70)01783-8
[57] 陈恒, 卢琳. 残余应力对金属材料局部腐蚀行为的影响. 工程科学学报, 2019, 41(7):929

Chen H, Lu L. Effect of residual stress on localized corrosion behavior of metallic materials. Chin J Eng, 2019, 41(7): 929
[58] Ejaz H, Lu Z P, Chen J J, et al. The effects of hydrogen on anodic dissolution and passivation of iron in alkaline solutions. Corros Sci, 2015, 101: 165 doi: 10.1016/j.corsci.2015.09.013
[59] Zhao Q Y, Wang Z H, Fan E D, et al. Effects of nanosized Nb carbide precipitates on the corrosion behavior of high-strength low-alloy steel in simulated seawater. Int J Electrochem Sci, 2017, 12: 7989
[60] Cui Q Q, Wu J S, Xie D H, et al. Effect of nanosized NbC precipitates on hydrogen diffusion in X80 pipeline steel. Materials, 2017, 10(7): 721 doi: 10.3390/ma10070721
[61] Li J, Wu J S, Wang Z H, et al. The effect of nanosized NbC precipitates on electrochemical corrosion behavior of high strength low-alloy steel in 3.5%NaCl solution. Int J Hydrogen Energy, 2017, 42(34): 22175 doi: 10.1016/j.ijhydene.2017.03.087
[62] Chen C Y, Liao M H. Synergistic effects of carbon content and Ti/Mo ratio on precipitation ehavior of HSLA steel: Insights from experiment and critical patent analysis. Mater Des, 2020, 186: 108361 doi: 10.1016/j.matdes.2019.108361
[63] Bansal G K, Srivastava V C, Chowdhury S G. Role of solute Nb in altering phase transformations during continuous cooling of a low-carbon steel. Mater Sci Eng A, 2019, 767: 138416 doi: 10.1016/j.msea.2019.138416
[64] Zhang X, Mi G Y, Xiong L D, et al. Effects of interlaminar microstructural inhomogeneity on mechanical properties and corrosion resistance of multi-layer fiber laser welded high strength low alloy steel. J Mater Process Technol, 2018, 252: 81 doi: 10.1016/j.jmatprotec.2017.09.012
[65] 万响亮, 李光强, 吴开明. 原位观察TiN 粒子对低合金高强度钢模拟焊接热影响区粗晶区晶粒细化作用. 工程科学学报, 2016, 38(3):371

Wan X L, Li G Q, Wu K M. In-situ observations of grain refinement by TiN particles in the simulated coarse-grained heat-affected zone of a high-strength low-alloy steel. Chin J Eng, 2016, 38(3): 371
[66] Moon J, Lee C. Behavior of (Ti, Nb)(C, N) complex particle during thermomechanical cycling in the weld CGHAZ of a microalloyed steel. Acta Mater, 2009, 57(7): 2311 doi: 10.1016/j.actamat.2009.01.042
[67] Qiao Q Q, Lu L, Fan E D, et al. Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater. Int J Hydrogen Energy, 2019, 44(51): 27962 doi: 10.1016/j.ijhydene.2019.08.259
[68] Shanmugam S, Misra R D K, Hartmann J, et al. Microstructure of high strength niobium-containing pipeline steel. Mater Sci Eng A, 2006, 441(1-2): 215 doi: 10.1016/j.msea.2006.08.017
[69] 张颖瑞, 董超芳, 李晓刚, 等. 电化学充氢条件下X70管线钢及其焊缝的氢致开裂行为. 金属学报, 2006, 42(5):521 doi: 10.3321/j.issn:0412-1961.2006.05.015

Zhang Y R, Dong C F, Li X G, et al. Hydrogen induced cracking behaviors of X70 pipeline steel and its welds under electrochemical charging. Acta Metall Sin, 2006, 42(5): 521 doi: 10.3321/j.issn:0412-1961.2006.05.015
[70] Li X D, Liu J H, Sun J B, et al. Effect of microstructural aspects in the heat-affected zone of high strength pipeline steels on the stress corrosion cracking mechanism: Part I. In acidic soil environment. Corros Sci, 2019, 160: 108167 doi: 10.1016/j.corsci.2019.108167
[71] 刘传森, 李壮壮, 陈长风. 不锈钢应力腐蚀开裂综述. 表面技术, 2020, 49(3):1

Liu C S, Li Z Z, Chen C F. Stress corrosion cracking of stainless steel. Surf Technol, 2020, 49(3): 1
[72] 李晓刚. 材料腐蚀与防护. 长沙: 中南大学出版社, 2009

Li X G. Corrosion and Protection of Materials. Changsha: Central South University Press, 2009
[73] Wang Y F, Hu S Y, Li Y, et al. Improved hydrogen embrittlement resistance after quenching–tempering treatment for a Cr‒Mo‒V high strength steel. Int J Hydrogen Energy, 2019, 44(54): 29017 doi: 10.1016/j.ijhydene.2019.09.142
[74] Wu W, Wang Q Y, Yang L, et al. Corrosion and SCC initiation behavior of low-alloy high-strength steels microalloyed with Nb and Sb in a simulated polluted marine atmosphere. J Mater Res Technol, 2020, 9(6): 12976 doi: 10.1016/j.jmrt.2020.09.033
[75] Fan E D, Zhang S Q, Xie D H, et al, Effect of nanosized NbC precipitates on hydrogen induced cracking of high-strength low-alloy steel. Int J Miner Metall Mater, https://doi.org/10.1007/s12613-020-2167-0
[76] Wu W, Liu Z Y, Wang Q Y, et al. Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying. Corros Sci, 2020, 170: 108693 doi: 10.1016/j.corsci.2020.108693
[77] Zhou C S, Ye B G, Song Y Y, et al. Effects of internal hydrogen and surface-absorbed hydrogen on the hydrogen embrittlement of X80 pipeline steel. Int J Hydrogen Energy, 2019, 44(40): 22547 doi: 10.1016/j.ijhydene.2019.04.239
[78] Ohaeri E, Eduok U, Szpunar J. Hydrogen related degradation in pipeline steel: A review. Int J Hydrogen Energy, 2018, 43(31): 14584 doi: 10.1016/j.ijhydene.2018.06.064
[79] 李金许, 王伟, 周耀, 等. 汽车用先进高强钢的氢脆研究进展. 金属学报, 2020, 56(4):444 doi: 10.11900/0412.1961.2019.00427

Li J X, Wang W, Zhou Y, et al. A review of research status of hydrogen embrittlement for automotive advanced high-strength steels. Acta Metall Sin, 2020, 56(4): 444 doi: 10.11900/0412.1961.2019.00427
[80] Jack T A, Pourazizi R, Ohaeri E, et al. Investigation of the hydrogen induced cracking behaviour of API 5L X65 pipeline steel. Int J Hydrogen Energy, 2020, 45(35): 17671 doi: 10.1016/j.ijhydene.2020.04.211
[81] Thomas A, Szpunar J A. Hydrogen diffusion and trapping in X70 pipeline steel. Int J Hydrogen Energy, 2020, 45(3): 2390 doi: 10.1016/j.ijhydene.2019.11.096
[82] Hojo T, Akiyama E, Saitoh H, et al. Effects of residual stress and plastic strain on hydrogen embrittlement of a stretch-formed TRIP-aided martensitic steel sheet. Corros Sci, 2020, 177: 108957 doi: 10.1016/j.corsci.2020.108957
[83] Cheng X Y, Zhang H X. A new perspective on hydrogen diffusion and hydrogen embrittlement in low-alloy high strength steel. Corros Sci, 2020, 174: 108800 doi: 10.1016/j.corsci.2020.108800
[84] Kalashami A G, Kermanpur A, Ghassemali E, et al. The effect of Nb on texture evolutions of the ultrafine-grained dual-phase steels fabricated by cold rolling and intercritical annealing. J Alloys Compd, 2017, 694: 1026 doi: 10.1016/j.jallcom.2016.10.148
[85] Depover T, Verbeken K. The effect of TiC on the hydrogen induced ductility loss and trappingbehavior of Fe‒C‒Ti alloys. Corros Sci, 2016, 112: 308 doi: 10.1016/j.corsci.2016.07.013
[86] Chun Y S, Park K T, Lee S C. Delayed static failure of twinning-induced plasticity steels. Scripta Mater, 2012, 66(12): 960 doi: 10.1016/j.scriptamat.2012.02.038
[87] Zhang S Q, Huang Y H, Sun B T, et al. Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels. Mater Sci Eng A, 2015, 626: 136 doi: 10.1016/j.msea.2014.12.051
[88] Kang H J, Yoo J S, Park J T, et al. Effect of nano-carbide formation on hydrogen-delayed fracture for quenching and tempering steels during high-frequency induction heat treatment. Mater Sci Eng A, 2012, 543: 6 doi: 10.1016/j.msea.2012.02.008
[89] Yoo J, Jo M C, Jo M C, et al. Effects of Ti alloying on resistance to hydrogen embrittlement in (Nb+Mo)-alloyed ultra-high-strength hot-stamping steels. Mater Sci Eng A, 2020, 791: 139763 doi: 10.1016/j.msea.2020.139763
[90] 武明, 褚武扬, 李金许, 等. 应力和夹杂对车轮钢中氢鼓泡的影响. 金属学报, 2006, 42(8):815 doi: 10.3321/j.issn:0412-1961.2006.08.007

Wu M, Chu W Y, Li J X, et al. Effects of stress and incluion on hydrogen blistering in wheel steel. Acta Metall Sin, 2006, 42(8): 815 doi: 10.3321/j.issn:0412-1961.2006.08.007
[91] 李岩, 付安庆, 韩燕. 湿硫化氢环境中20G钢氢鼓泡原因. 腐蚀与防护, 2015, 36(7):687 doi: 10.11973/fsyfh-201507019

Li Yan, Fu A Q, Han Y. Causes of hydrogen blistering for 20G steel in wet hydrogen sulfide environment. Corros Prot, 2015, 36(7): 687 doi: 10.11973/fsyfh-201507019
[92] Huang W, Gu H R, Liu Q H, et al. Suppression of hydrogen-induced damage in 22MnB5 hot stamping steel by microalloying. Mater Chem Phys, 2020, 256: 123729 doi: 10.1016/j.matchemphys.2020.123729
[93] Zhang S Q, Zhao Q Y, Liu J, et al. Understanding the effect of niobium on hydrogen-induced blistering in pipeline steel: A combined experimental and theoretical study. Corros Sci, 2019, 159: 108142 doi: 10.1016/j.corsci.2019.108142
[94] Giordani E J, Guimarães V A, Pinto T B, et al. Effect of precipitates on the corrosion-fatigue crack initiation of ISO 5832-9 stainless steel biomaterial. Int J Fatigue, 2004, 26(10): 1129 doi: 10.1016/j.ijfatigue.2004.03.002