• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

型砂材质与挤压成形工艺对砂型表面性能的影响

郭莉军 单忠德 刘丽敏 姜二彪

郭莉军, 单忠德, 刘丽敏, 姜二彪. 型砂材质与挤压成形工艺对砂型表面性能的影响[J]. 工程科学学报, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
引用本文: 郭莉军, 单忠德, 刘丽敏, 姜二彪. 型砂材质与挤压成形工艺对砂型表面性能的影响[J]. 工程科学学报, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
GUO Li-jun, SHAN Zhong-de, LIU Li-min, JIANG Er-biao. Effect of sand-mold material and extrusion forming process on sand-mold surface properties[J]. Chinese Journal of Engineering, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
Citation: GUO Li-jun, SHAN Zhong-de, LIU Li-min, JIANG Er-biao. Effect of sand-mold material and extrusion forming process on sand-mold surface properties[J]. Chinese Journal of Engineering, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002

型砂材质与挤压成形工艺对砂型表面性能的影响

doi: 10.13374/j.issn2095-9389.2020.01.15.002
基金项目: 国家杰出青年科学基金资助项目(51525503);机械科学研究总院技术发展基金资助项目(311908Q9)
详细信息

Effect of sand-mold material and extrusion forming process on sand-mold surface properties

More Information
  • 摘要: 以数字化柔性挤压成形砂块为研究对象,通过设计单因素试验进行了砂型种类、粘结剂质量分数及挤压压力对型腔表面质量影响规律的研究,进而得出高精度树脂砂型挤压成形的最优参数组合。结果显示:无模砂型外部与砂型内部的表面性能存在差异。不同砂型种类的砂型型腔表面性能不同,沙粒的角形系数对砂型型腔表面性能有较大影响。随着砂型挤压力的提高,砂粒之间的距离减小,砂粒并联接触方式增多,砂型在经过切削时,砂型表面产生裂纹的数量及延伸深度大幅减小,砂型型腔表面性能不断提高。随着树脂质量分数的增大,砂粒的包覆厚度增大,从而砂粒的粘结桥增多,砂型强度增加,砂型切削时产生的裂纹数量减小,砂型型腔表面性能不断提高。本文为真实获得砂型表面质量提供了方法,有助于无模铸造精密成形技术的推广。
  • 图 1  表面性能测试原理

    Figure 1.  Diagram of the surface property test

    图 2  试样加工

    Figure 2.  Sample processing

    图 3  砂粒接触模型

    Figure 3.  Sand contact model

    图 4  砂粒质量与磨削次数的关系

    Figure 4.  Relationship between the sand quality and grinding time

    图 5  砂粒形貌。(a)宝珠砂;(b)硅砂;(c)铬铁矿砂

    Figure 5.  Sand grain appearance: (a) ceramsite; (b) silica sand; (c) chromite sand

    图 6  不同挤压压力、树脂质量分数与砂型表面性能的关系. (a)树脂质量分数1.6%; (b)树脂质量分数2.0%;(c)树脂质量分数2.4%;(d)树脂质量分数2.8%;(e)树脂质量分数3.2%

    Figure 6.  Relationship between the surface properties of sand mold and extrusion pressure under varying resin contents: (a) resin content 1.6%; (b) resin content 2.0%; (c) resin content 2.4%; (d) resin content 2.8%; (e) resin content 3.2%

    图 7  不同树脂质量分数与砂型表面性能的关系

    Figure 7.  Relationship between the surface properties of sand mold and resin content

    表 1  不同磨削次序型砂的表面性能

    Table 1.  Surface properties of sand under different grinding times

    Times of grindingSurface properties/g
    First time0.7075
    Second time0.4025
    Third time0.3675
    Fourth time0.3525
    Fifth time0.275
    下载: 导出CSV

    表 2  不同种类型砂的表面性能

    Table 2.  Surface properties of different types of sand

    Type of sandSurface properties/g
    Ceramsite0.09
    Silica sand0.15
    Chromite sand0.28
    下载: 导出CSV

    表 3  不同挤压压力下不同树脂质量分数砂型的表面性能

    Table 3.  Surface properties of sand mold with different resin contents under different extrusion pressures

    Different extrusion pressures /MPaSurface properties of sand with different
    resin contents/g
    1.6%2.0%2.4%2.8%3.2%
    00.2030.1230.1130.0900.077
    0.050.1930.1200.1230.0630.037
    0.10.1940.1100.1020.0600.053
    0.150.1930.1030.0930.0630.043
    0.20.1600.1070.0730.0630.060
    下载: 导出CSV

    表 4  不同树脂质量分数砂型的表面性能

    Table 4.  Surface properties with different mass fraction of resin

    Mass fraction of resin/%Surface properties/gMass fraction of resin/%Surface properties/g
    1.60.7082.40.235
    1.80.652.60.247
    2.00.622.80.25
    2.20.513.00.23
    下载: 导出CSV
  • [1] Shan Z D, Qin S Y, Liu Q, et al. Key manufacturing technology & equipment for energy saving and emissions reduction in mechanical equipment industry. Int J Precision Eng Manuf, 2012, 13(7): 1095 doi:  10.1007/s12541-012-0143-y
    [2] 郭莉军, 单忠德, 刘丽敏. 数字化柔性挤压成形工艺对砂型性能影响规律研究. 铸造技术, 2020, 41(2):97

    Guo L J, Shan Z D, Liu L M. Effect of digital flexible extrusion process on the properties of sand mold. Foundry Technol, 2020, 41(2): 97
    [3] 刘丰, 单忠德, 李柳, 等. 大型薄壁壳件无模铸造技术研究. 铸造技术, 2013, 34(10):1324

    Liu F, Shan Z D, Li L, et al. Research on patternless casting technologies for large thin-walled shell pieces. Foundry Technol, 2013, 34(10): 1324
    [4] Josan A, Bretotean C P, Raţiu S. Critical analysis of the influence of the possibilities of establishing the moulding technology on obtaining the castings. IOP Conf Ser Mater Sci Eng, 2018, 294: 012038 doi:  10.1088/1757-899X/294/1/012038
    [5] Wen S F, Shen Q W, Wei Q S, et al. Material optimization and post-processing of sand moulds manufactured by the selective laser sintering of binder-coated Al2O3 sands. J Mater Process Technol, 2015, 225: 93
    [6] 张帅, 单忠德, 顾兆现, 等. 数字化砂箱型砂填充路径规划及工艺试验研究. 铸造, 2016, 65(8):713 doi:  10.3969/j.issn.1001-4977.2016.08.001

    Zhang S, Shan Z D, Gu Z X, et al. Study on path planning and process test of molding sand filling sandbox digitally. Foundry, 2016, 65(8): 713 doi:  10.3969/j.issn.1001-4977.2016.08.001
    [7] Torielli R M, Abrahams R A, Smillie R W, et al. Using lean methodologies for economically and environmentally sustainable foundries. China Foundry, 2011, 8(1): 74
    [8] 黄天佑. 铸造手册第4卷: 造型材料. 2版. 北京: 机械工业出版社, 2002

    Huang T Y. Casting Handbook Volume 4 Molding Materials. 2nd Ed. Beijing: Machinery Industry Press, 2002
    [9] Siddique R, Singh G. Utilization of waste foundry sand (WFS) in concrete manufacturing. Resour Conserv Recycl, 2011, 55(11): 885 doi:  10.1016/j.resconrec.2011.05.001
    [10] Sun S H, Koizumi Y, Kurosu S, et al. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater, 2014, 64: 154 doi:  10.1016/j.actamat.2013.10.017
    [11] Snelling D, Li Q, Meisel N, et al. Lightweight metal cellular structures fabricated via 3D printing of sand cast molds. Adv Eng Mater, 2015, 17(7): 923 doi:  10.1002/adem.201400524
    [12] Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J, 2007, 13(4): 196 doi:  10.1108/13552540710776142
    [13] Zocca A, Gomes C M, Bernardo E, et al. LAS glass–ceramic scaffolds by three-dimensional printing. J Eur Ceram Soc, 2013, 33(9): 1525 doi:  10.1016/j.jeurceramsoc.2012.12.012
    [14] Butscher A, Bohner M, Roth C, et al. Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater, 2012, 8(1): 373 doi:  10.1016/j.actbio.2011.08.027
    [15] Almaghariz E S, Conner B P, Lenner L, et al. Quantifying the role of part design complexity in using 3D sand printing for molds and cores. Int J Metalcast, 2016, 10(3): 240 doi:  10.1007/s40962-016-0027-5
    [16] Li E Q, Xu Q, Sun J, et al. Design and fabrication of a PET/PTFE-based piezoelectric squeeze mode drop-on-demand inkjet printhead with interchangeable nozzle. Sens Actuators A, 2010, 163(1): 315 doi:  10.1016/j.sna.2010.07.014
    [17] Dobosz S M, Grabarczyk A, Major-Gabryś K, et al. Influence of quartz sand quality on bending strength and thermal deformation of moulding sands with synthetic binders. Arch Foundry Eng, 2015, 15(2): 9 doi:  10.1515/afe-2015-0028
    [18] Dong X L, Li X Y, Shan Z D, et al. Rapid manufacturing of sand molds by direct milling. Tsinghua Sci Technol, 2009, 14(Suppl 1): 212
    [19] Ayoola W A, Adeosun S O, Sanni O S, et al. Effect of casting mould on mechanical properties of 6063 aluminum alloy. J Eng Sci Technol, 2012, 7(1): 89
    [20] 赵志刚, 仇圣桃, 朱荣. 水冷铜模与砂模铸造 M2 钢显微组织对比. 工程科学学报, 2016, 38(6):787

    Zhao Z G, Qiu S T, Zhu R. Comparison between the microstructures of M2 steel cast by the water-cooled copper mould and the sand mould. Chin J Eng, 2016, 38(6): 787
    [21] 谢祖锡, 向青春, 毛萍莉, 等. 两种高紧实度砂型回弹的检测与分析. 铸造, 2004, 53(9):705 doi:  10.3321/j.issn:1001-4977.2004.09.007

    Xie Z X, Xiang Q C, Mao P L, et al. Comparison and analysis of the springback for twotypes of high compacted sand molds. Foundry, 2004, 53(9): 705 doi:  10.3321/j.issn:1001-4977.2004.09.007
    [22] Peyre P, Rouchausse Y, Defauchy D, et al. Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers. J Mater Process Technol, 2015, 225: 326 doi:  10.1016/j.jmatprotec.2015.04.030
    [23] 刘丽敏, 单忠德, 刘丰. 大型铸铝件铸造工艺有限元分析与优化. 铸造技术, 2012, 33(8):978

    Liu L M, Shan Z D, Liu F. FEM analysis and optimization on casting process for large aluminum castings. Foundry Technol, 2012, 33(8): 978
    [24] Cheng R, Wu X Y, Zheng J P. The optimization design study of selective laser sintering process parameters on the pro-coated sand mold. Appl Mech Mater, 2011, 55-57: 853 doi:  10.4028/www.scientific.net/AMM.55-57.853
    [25] Senthilkumaran K, Pandey P M, Rao P V M. Influence of building strategies on the accuracy of parts in selective laser sintering. Mater Des, 2009, 30(8): 2946 doi:  10.1016/j.matdes.2009.01.009
    [26] Bernard S A, Balla V K, Bose S, et al. Direct laser processing of bulk lead zirconate titanate ceramics. Mater Sci Eng B, 2010, 172(1): 85 doi:  10.1016/j.mseb.2010.04.022
    [27] 朱筠, 季敦生, 卜伟. 黏土湿型表面稳定剂的组成及制备工艺. 铸造工程, 2009, 33(3):5 doi:  10.3969/j.issn.1673-3320.2009.03.002

    Zhu Y, Ji D S, Bo W. Composition and preparation of surface stabilizer for green sang mold. Foundry Eng, 2009, 33(3): 5 doi:  10.3969/j.issn.1673-3320.2009.03.002
    [28] 李辉, 杜建华, 王浩旭, 等. 成型工艺对树脂基摩擦材料及其摩擦学性能的影响. 工程科学学报, 2017, 39(8):1182

    Li H, Du J H, Wang H X, et al. Effect of molding process on tribological characteristics of friction materials based on resin. Chin J Eng, 2017, 39(8): 1182
    [29] 孙其诚, 金峰, 王光谦, 等. 二维颗粒体系单轴压缩形成的力链结构. 物理学报, 2010, 59(1):30 doi:  10.7498/aps.59.30

    Sun Q C, Jin F, Wang G Q, et al. Force chains in a uniaxially compressed static granular matter in 2D. Acta Phys Sin, 2010, 59(1): 30 doi:  10.7498/aps.59.30
  • [1] 刘洪波, 李建新, 吝章国, 李玉谦, 田志强, 杜琦铭, 梅东贵, 刘崇, 刘占礼, 马浩冉.  大线能量焊接用EH420海工钢生产工艺及焊接性能 . 工程科学学报, 2020, 42(11): 1473-1480. doi: 10.13374/j.issn2095-9389.2020.03.23.001
    [2] 于江,  吕旭滨,  秦拥军.  基于分形理论无腹筋混凝土梁的受剪性能试验研究 . 工程科学学报, 2020, (): -. doi: 10.13374/j.issn2095-9389.2020.03.19.003
    [3] 梁文, 冯彬, 朱国明, 康永林, 林利, 刘仁东.  1800 MPa热成形钢与CR340LA低合金高强钢激光焊接性能 . 工程科学学报, 2020, 42(6): 755-762. doi: 10.13374/j.issn2095-9389.2019.06.24.005
    [4] 王珺, 雷宇, 刘新华, 解国良, 江燕青, 张帅.  水平连铸复合成形铜铝层状复合材料的组织与性能 . 工程科学学报, 2020, 42(2): 216-224. doi: 10.13374/j.issn2095-9389.2019.07.08.005
    [5] 崔振楠, 林利, 朱国明, 康永林, 刘仁东, 田鹏.  DP590/DP780高强钢管液压成形的性能 . 工程科学学报, 2020, 42(2): 233-241. doi: 10.13374/j.issn2095-9389.2019.01.15.004
    [6] 李玉森, 岳振明, 妥之彧, 闵鑫瑞, 高军.  铝合金管材6061自由弯曲成形工艺仿真及优化 . 工程科学学报, 2020, 42(6): 769-777. doi: 10.13374/j.issn2095-9389.2019.06.21.001
    [7] 李霞, 杨平, 贾志伟, 张海利.  低温取向硅钢常化工艺和渗氮工艺对组织、织构和磁性能的影响 . 工程科学学报, 2019, 41(5): 610-617. doi: 10.13374/j.issn2095-9389.2019.05.007
    [8] 朱冬梅, 丁峰, 刘海平, 刘国勇.  一种光敏树脂结构的力学性能 . 工程科学学报, 2019, 41(4): 512-520. doi: 10.13374/j.issn2095-9389.2019.04.012
    [9] 闫文凯, 陈步明, 冷和, 黄惠, 郭忠诚, 徐瑞东.  铝棒低银铅合金表面陶瓷化复合阳极的制备与性能 . 工程科学学报, 2019, 41(10): 1315-1323. doi: 10.13374/j.issn2095-9389.2018.11.04.002
    [10] 钱凌云, 王梦琦, 孙朝阳, 王小灿.  核电主管道非对称双管嘴同时挤压成形工艺 . 工程科学学报, 2019, 41(1): 124-133. doi: 10.13374/j.issn2095-9389.2019.01.014
    [11] 施兵兵, 刘新华, 谢建新, 谢明.  银包铝棒材立式连铸复合成形制备工艺 . 工程科学学报, 2019, 41(5): 633-645. doi: 10.13374/j.issn2095-9389.2019.05.010
    [12] 李公成, 王洪江, 吴爱祥, 焦华喆, 王方正.  全尾砂无耙深锥稳态浓密性能分析 . 工程科学学报, 2019, 41(1): 60-66. doi: 10.13374/j.issn2095-9389.2019.01.006
    [13] 翟广坤, 李曙林, 陈素素, 尚柏林.  氟化改性硅树脂制备的超疏水涂层防覆冰性能 . 工程科学学报, 2018, 40(7): 864-870. doi: 10.13374/j.issn2095-9389.2018.07.013
    [14] 彭谦, 董世运, 康学良, 门平, 闫世兴.  预热对激光熔化沉积成形12CrNi2合金钢组织与性能的影响 . 工程科学学报, 2018, 40(11): 1342-1350. doi: 10.13374/j.issn2095-9389.2018.11.008
    [15] 娄敏轩, 刘新华, 姜雁斌, 谢建新, 谢明.  铜包铝丝材的旋锻复合-拉拔成形与组织性能 . 工程科学学报, 2018, 40(11): 1358-1372. doi: 10.13374/j.issn2095-9389.2018.11.010
    [16] 胡宁, 樊自拴.  铸铁喷涂渗铝工艺和性能 . 工程科学学报, 2017, 39(6): 889-895. doi: 10.13374/j.issn2095-9389.2017.06.011
    [17] 刘伟, 孔德军, 吴凯, 凡志员.  温度对40Cr钢温挤压成形的摩擦-磨损性能影响 . 工程科学学报, 2017, 39(2): 259-266. doi: 10.13374/j.issn2095-9389.2017.02.014
    [18] 王耀, 郎利辉, 孙志莹, 阚鹏.  一种板材小圆角胀压复合成形工艺解析 . 工程科学学报, 2017, 39(7): 1077-1086. doi: 10.13374/j.issn2095-9389.2017.07.014
    [19] 闻玉辉, 朱国明, 郝亮, 戴思雨, 康永林.  Nb-Ti微合金化热冲压成形用钢的微观组织与力学性能 . 工程科学学报, 2017, 39(6): 859-866. doi: 10.13374/j.issn2095-9389.2017.06.007
    [20] 李辉, 杜建华, 王浩旭, 吕莹莹.  成型工艺对树脂基摩擦材料及其摩擦学性能的影响 . 工程科学学报, 2017, 39(8): 1182-1187. doi: 10.13374/j.issn2095-9389.2017.08.007
  • 加载中
图(7) / 表 (4)
计量
  • 文章访问数:  562
  • HTML全文浏览量:  189
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-15
  • 网络出版日期:  2021-02-02
  • 刊出日期:  2021-02-26

型砂材质与挤压成形工艺对砂型表面性能的影响

doi: 10.13374/j.issn2095-9389.2020.01.15.002
    基金项目:  国家杰出青年科学基金资助项目(51525503);机械科学研究总院技术发展基金资助项目(311908Q9)
    通讯作者: E-mail:shanzd@cam.com.cn
  • 中图分类号: TG242

摘要: 以数字化柔性挤压成形砂块为研究对象,通过设计单因素试验进行了砂型种类、粘结剂质量分数及挤压压力对型腔表面质量影响规律的研究,进而得出高精度树脂砂型挤压成形的最优参数组合。结果显示:无模砂型外部与砂型内部的表面性能存在差异。不同砂型种类的砂型型腔表面性能不同,沙粒的角形系数对砂型型腔表面性能有较大影响。随着砂型挤压力的提高,砂粒之间的距离减小,砂粒并联接触方式增多,砂型在经过切削时,砂型表面产生裂纹的数量及延伸深度大幅减小,砂型型腔表面性能不断提高。随着树脂质量分数的增大,砂粒的包覆厚度增大,从而砂粒的粘结桥增多,砂型强度增加,砂型切削时产生的裂纹数量减小,砂型型腔表面性能不断提高。本文为真实获得砂型表面质量提供了方法,有助于无模铸造精密成形技术的推广。

English Abstract

郭莉军, 单忠德, 刘丽敏, 姜二彪. 型砂材质与挤压成形工艺对砂型表面性能的影响[J]. 工程科学学报, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
引用本文: 郭莉军, 单忠德, 刘丽敏, 姜二彪. 型砂材质与挤压成形工艺对砂型表面性能的影响[J]. 工程科学学报, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
GUO Li-jun, SHAN Zhong-de, LIU Li-min, JIANG Er-biao. Effect of sand-mold material and extrusion forming process on sand-mold surface properties[J]. Chinese Journal of Engineering, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
Citation: GUO Li-jun, SHAN Zhong-de, LIU Li-min, JIANG Er-biao. Effect of sand-mold material and extrusion forming process on sand-mold surface properties[J]. Chinese Journal of Engineering, 2021, 43(2): 273-278. doi: 10.13374/j.issn2095-9389.2020.01.15.002
  • 基于去除加工原理的砂型无模铸造精密成形技术[1-5],是一种直接铸型快速、绿色制造方法,通过现代数控加工技术和传统铸造技术之间的融合,快速制造出所需砂型[6-10]。实现了铸件生产的数字化、精密化、柔性化、自动化、绿色化[11-15]

    据统计, 由于型砂质量问题引起的铸件废品占所有废品总数的60%~70%[15-20]。砂型表面质量是砂型质量的重要要素之一,其直接影响到铸件的表面质量,甚至影响铸件的性能及质量。传统砂型的表面质量可以由砂型抗拉强度间接表征。数字化柔性挤压成形的砂型表面受到切削刀具的刮削[21-26],容易使的砂型表面产生细小裂纹,导致砂型表面出现松散、易脱落、表面质量降低;而且铣削后的砂型表面存在着大量硬而微小的砂屑,如果直接用点触法测量,触头接触砂型表面,相当于触头在砂轮上移动,极易损坏测量设备;这时砂型的表面质量不能由砂型抗拉强度来表征。表面粗糙度也不能反映出砂型表面的松散程度及砂型的表面质量。本文采用表面性能来表征数字化柔性挤压砂型的表面质量,旨在为高效率、高精度、低成本的数字化柔性挤压成形技术提供一些理论基础。

    • 传统的砂型表面质量表征是表面安定性[27]。传统黏土砂表面安定性的试样无法从砂型中取得,而自制的表面性能及表面安定性试样不能真实表征传统砂型的表面质量。用抗拉强度间接表示表面性的也不多,不是通行做法。数字化柔性挤压成形技术可以对砂型进行切削,可直接从砂型中切取表面性能及表面安定性试样,从而使表面性能及表面安定性能真实表征数字化柔性挤压砂型的表面质量。

      砂型的表面性能以试验前后试样质量的变化来表示:将2个圆柱形标准试样,试样尺寸ϕ50 mm×50 mm,并列放置于滚筒筛中,圆筒转动30 s后停止旋转,称量从筛孔中掉下的砂粒质量,与原试样质量的比值为砂型的表面性能。表面安定性是把圆柱形砂型试样夹在旋转试验仪上旋转,用钢丝针布刷在旋转的砂型试样表面进行刷磨,旋转30 s后称量被磨下的砂粒质量,即为砂型的表面安定性,其测试原理如图1所示。由于表面性能试验的试样在筛上易出现不规则的颠簸翻滚,从而使掉落的砂量波动较大,所以本实验选用表面安定性来表征砂型表面质量。

      图  1  表面性能测试原理

      Figure 1.  Diagram of the surface property test

    • 试验材料:砂型材质为树脂砂,型砂选取硅砂、宝珠砂和铬铁矿砂,粘结材料选用碱性酚醛树脂和固化剂。试验用仪器及设备:CAMTC-SMM3000S 型号砂型数字化无模铸造精密成形机,表面性能试验仪,SHY 叶片式树脂砂混砂机碗型混砂机,百分之一电子天平。试验条件:砂温(20±2) ℃;室温(25±2) ℃;相对湿度(50±5)%。混制的砂型在数字化精确成形机上切削出砂型安定试样,如图2所示。

      图  2  试样加工

      Figure 2.  Sample processing

    • 砂型的强度失效在微观上为型砂间粘结材料的粘结桥的断裂,宏观上可认为是与岩石类似的脆性力学行为[28-29]。树脂砂型由原砂和粘结剂经混合后固化而成,型砂之间的微观接触形式可分为并联和串联的接触形式。理想的砂型颗粒的并联和串联接触模型是将砂粒简化为理想的球体,砂粒之间的粘结桥其形状简化为球形凹端的短圆柱体。如图3所示,其中RsRbt分别表示砂粒直径、粘结桥圆柱体直径及两砂粒表面距离.当t>0时,接触模型为串联接触;当t=0时,接触模型为并联接触。

      图  3  砂粒接触模型

      Figure 3.  Sand contact model

    • 表面性能试样在耐磨测试仪上,测量不同的磨削次数。每测量一次,旋转轴旋转30圈。分别测量三个表面性能试样,按磨削次数取平均值,实验结果表1所示。

      表 1  不同磨削次序型砂的表面性能

      Table 1.  Surface properties of sand under different grinding times

      Times of grindingSurface properties/g
      First time0.7075
      Second time0.4025
      Third time0.3675
      Fourth time0.3525
      Fifth time0.275

      根据表1绘制磨削砂粒质量与磨削次数的曲线关系图,如图4所示。

      图  4  砂粒质量与磨削次数的关系

      Figure 4.  Relationship between the sand quality and grinding time

      实验结果如图所示,可看出,第一次磨削的砂粒质量大于后面几次的磨削质量,后面几次的磨削质量变化较小。结果说明砂型外部的表面性能与砂型内部的表面性能存在差异,无模砂型的抗拉强度不能够真实反映砂型的表面质量。砂型加工时刀具对砂型进行刮切,导致砂型表面的砂粒间会产生裂纹,降低了砂型的表面性能。

    • 选择宝珠砂、硅砂与铬铁矿砂分别按照型砂、碱性酚醛树脂和固化剂质量比为1000∶20∶5,使用SHY 叶片式碗型树脂砂混砂机混砂,混合时长为 15 s,将混好的树脂砂装入砂箱内,砂箱尺寸为150 mm×150 mm×100 mm,树脂砂固化12 h后,将砂块放置在数字化无模铸造精密成形上加工成表面性能试样,试样尺寸ϕ50 mm×50 mm,然后对所得砂型试样表面性能进行测量。不同种类型砂的表面性能测量结果如表2所示。

      表 2  不同种类型砂的表面性能

      Table 2.  Surface properties of different types of sand

      Type of sandSurface properties/g
      Ceramsite0.09
      Silica sand0.15
      Chromite sand0.28

      表2可见宝珠砂的性能最好,铬铁矿砂的表面性能最差。这是由于型砂的角系数造成的。原砂的形状一般分为圆形、多角形和尖角形[2]。宝珠砂、硅砂与铬铁矿砂的颗粒形貌如图5所示。铬铁矿砂的砂粒为尖角形,其砂型的粘结桥容易形成压力集中。在无模切削过程中,切削表面很容易产生裂纹并且裂纹的延伸较深,导致其砂型表面容易脱落及形成表面疏松,所以其表面性能较差。宝珠砂的砂粒形状为圆形,其砂型的粘结桥受力较均匀,砂型表面不容易产生裂纹,所以其表面性能较好。而硅砂的砂粒形状介于两者之间,其表面性能也介于两者之间。

      图  5  砂粒形貌。(a)宝珠砂;(b)硅砂;(c)铬铁矿砂

      Figure 5.  Sand grain appearance: (a) ceramsite; (b) silica sand; (c) chromite sand

    • 选用硅砂,在型砂、碱性酚醛树脂和固化剂质量比为分别为1000∶16∶4、1000∶20∶5、1000∶24∶6、1000∶28∶7和1000∶32∶8前提下,使用SHY叶片式碗型树脂砂混砂机混砂,混合时长为15 s,将混好的树脂砂装入砂箱内,砂箱尺寸为150 mm×150 mm×100 mm,在预固化阶段的施加压强分别为0、0.05、0.1 、0.15和0.2 MPa的挤压压强,经过30 min保压和12 h固化,将砂块放置在数字化无模铸造精密成形上加工成表面性能试样,然后对所得砂型试样进行表面性能进行测量。测量结果如表3所示。绘制挤压压力与表面性能的关系图如图6所示。

      表 3  不同挤压压力下不同树脂质量分数砂型的表面性能

      Table 3.  Surface properties of sand mold with different resin contents under different extrusion pressures

      Different extrusion pressures /MPaSurface properties of sand with different
      resin contents/g
      1.6%2.0%2.4%2.8%3.2%
      00.2030.1230.1130.0900.077
      0.050.1930.1200.1230.0630.037
      0.10.1940.1100.1020.0600.053
      0.150.1930.1030.0930.0630.043
      0.20.1600.1070.0730.0630.060

      图  6  不同挤压压力、树脂质量分数与砂型表面性能的关系. (a)树脂质量分数1.6%; (b)树脂质量分数2.0%;(c)树脂质量分数2.4%;(d)树脂质量分数2.8%;(e)树脂质量分数3.2%

      Figure 6.  Relationship between the surface properties of sand mold and extrusion pressure under varying resin contents: (a) resin content 1.6%; (b) resin content 2.0%; (c) resin content 2.4%; (d) resin content 2.8%; (e) resin content 3.2%

      每种砂型树脂质量分数配比,砂型表面性能随挤压压力变化的趋势如图6所示。

      由图a、b、c、d可见,不同树脂质量分数的砂型,总体趋势为随着挤压压力的增大,砂型的表面性能不断提高。在挤压压力作用下,砂粒间的间距更紧密,增加了砂粒粘结桥的数量及粘结桥的接触面积。在压力作用下,砂粒之间的距离减小,砂粒并联接触方式增多,砂型在经过切削时,砂型表面产生裂纹的数量及深度大幅减小,因此,增大砂型成形时的挤压压力能够提高砂型的表面性能。由图e可见,树脂质量分数最高时,砂型表面性能随着挤压应力的增大,呈波动变化。这是由于树脂质量分数较高时,砂型具有一定的弹性特征[21],受不同挤压压力时,砂型的回弹变形不稳定,回弹对砂型的粘结桥造成破坏,所以砂型的表面性能呈波动变化。

    • 选用硅砂,在型砂、碱性酚醛树脂和固化剂质量比为分别为1000∶16∶4、1000∶18∶4.5、1000∶20∶5、1000∶22∶ 5.5、1000∶24∶6、1000∶26: 6.5、1000∶28∶7和1000∶30∶7.5前提下,使用SHY 叶片式树脂砂混砂机碗型混砂机混砂,混合时长为15 s,将混好的树脂砂装入砂箱内,砂箱尺寸为150 mm×150 mm×100 mm,在预固化阶段的施加压强为0 MPa的挤压压强,经过30 min保压和12 h固化,将砂块放置在数字化无模铸造精密成形上加工成表面性能试样,然后对所得砂型试样进行表面性能进行测量。测量结果如表4所示。

      表 4  不同树脂质量分数砂型的表面性能

      Table 4.  Surface properties with different mass fraction of resin

      Mass fraction of resin/%Surface properties/gMass fraction of resin/%Surface properties/g
      1.60.7082.40.235
      1.80.652.60.247
      2.00.622.80.25
      2.20.513.00.23

      绘制挤压压力与表面性能的关系图如图7所示。

      图  7  不同树脂质量分数与砂型表面性能的关系

      Figure 7.  Relationship between the surface properties of sand mold and resin content

      从图中可以看出,在不加挤压压力的情况下,随着树脂质量分数的增加,砂型的表面性能不断提高。这是由于树脂质量分数增加后,砂粒的包覆厚度增大,从而砂粒的粘结桥增多,砂型强度增加,砂型切削是产生的裂纹数量减小,所以砂型的表面性能提高了。

    • (1)本文采用砂型表面性能来表征无模数字化挤压成型砂型的表面质量,能够直接反映砂型加工后型腔的表面质量。得到了砂型材质对砂型型腔表面质量的影响规律。

      (2)不同砂型种类的砂型表面性能不同。砂粒的角形系数对砂型的表面性能有较大的影响。砂粒的角形系数越小砂型表面性能越好。

      (3)随着挤压压力的增大,砂型的表面性能不断提高。随着树脂质量分数的增大,砂型表面性能不断提高。本研究为无模成形砂型表面质量的测量提供了新方法,为提高无模成形砂型表面质量提供了依据。

参考文献 (29)

目录

    /

    返回文章
    返回