• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于FBRM和PVM技术的尾矿浓密过程絮团演化规律

周旭 吴爱祥 王洪江 王贻明 尹升华 阮竹恩

周旭, 吴爱祥, 王洪江, 王贻明, 尹升华, 阮竹恩. 基于FBRM和PVM技术的尾矿浓密过程絮团演化规律[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.06.02.004
引用本文: 周旭, 吴爱祥, 王洪江, 王贻明, 尹升华, 阮竹恩. 基于FBRM和PVM技术的尾矿浓密过程絮团演化规律[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.06.02.004
ZHOU Xu, WU Ai-xiang, WANG Hong-jiang, WANG Yi-ming, YIN Sheng-hua, RUAN Zhu-en. Aggregate evolution rule during tailings thickening based on FBRM and PVM[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.06.02.004
Citation: ZHOU Xu, WU Ai-xiang, WANG Hong-jiang, WANG Yi-ming, YIN Sheng-hua, RUAN Zhu-en. Aggregate evolution rule during tailings thickening based on FBRM and PVM[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.06.02.004

基于FBRM和PVM技术的尾矿浓密过程絮团演化规律

doi: 10.13374/j.issn2095-9389.2020.06.02.004
基金项目: 国家自然科学基金资助项目(51674012)
详细信息
    通讯作者:

    E-mail:pedrozhxu@gmail.com

  • 中图分类号: TD853.34

Aggregate evolution rule during tailings thickening based on FBRM and PVM

More Information
  • 摘要: 在初始泥层高75 cm和耙架转速为0、0.1、1和10 r·min−1条件,以及耙架转速为0.1 r·min−1和初始泥层高度为75、45和25 cm条件下,采用FBRM和PVM实时在线监测技术,对动态浓密系统泥层脱水过程絮团结构演化进行原位连续观测,获得了泥层脱水过程中,絮团直径、数量分布特征和实时图像。研究结果表明,尾矿浓密过程中絮团直径和数量随剪切时间延长呈现先增长后降低,再保持稳定的状态。根据絮团直径变化程度,将絮团密实化过程分为絮团生长期、絮团重构期和絮团破碎期3个阶段。在剪切速率0.1 r·min−1和初始泥层高度75 cm实验条件下,有利于絮团生长和絮团快速破裂重构,并提高絮团密实化程度,但过高的剪切速率作用对絮团结构影响程度下降。剪切速率的增加造成絮团平均直径减小,同时絮团平均直径减小的速率上升。随着初始泥层高度增大,絮团生长阶段时间更长,絮团直径峰值更大,重构期较长,絮团平均直径随初始泥层高度增加而增大。尾矿絮团分形维数可以反映絮团结构变化特征,结合PVM图像的分形维数和孔隙率计算,分析了剪切破坏力与絮团凝聚力存在的相互平衡关系,基于这种动态平衡对絮团破裂程度的影响,研究了尾矿浓密过程中的絮团密实化规律。

     

  • 图  1  全尾砂粒径分布曲线

    Figure  1.  Particle size distribution of tailings

    图  2  实验系统示意图

    Figure  2.  Schematic of experimental system

    图  3  不同剪切条件下絮团平均弦长变化曲线

    Figure  3.  Average chord length of aggregates under different shear conditions

    图  4  不同初始泥层高度条件下絮团平均弦长变化曲线

    Figure  4.  Average chord length of aggregates under different initial mud bed heights

    图  5  初始泥层高度75 cm耙架转速0.1 r·min−1条件下不同时刻的絮团结构PVM图像

    Figure  5.  PVM image of aggregate structure at different time under initial mud bed height of 75 cm and rake frame rotating speed of 0.1 r·min−1

    图  6  不同剪切速率条件下絮团分形维数和孔隙率的关系曲线

    Figure  6.  Relationship between aggregate fractal dimension and porosity under different shear rates

    图  7  不同初始泥层高度条件下絮团分形维数和孔隙率的关系曲线

    Figure  7.  Relationship between aggregate fractal dimension and porosity under different initial mud bed heights

    图  8  耙架剪切速率与絮团直径的关系

    Figure  8.  Relationship between shear rate of rake and aggregate diameter

    图  9  初始泥层高度与絮团直径的关系

    Figure  9.  Relationship between initial mud layer height and aggregate diameter

    图  10  不同实验条件下的絮团破裂程度与絮团分析维数和剪切时间的关系

    Figure  10.  Relationship of aggregate breakage with fractal dimension and shear time under different test conditions

  • [1] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势. 工程科学学报, 2018, 40(5):517
    [2] Zhang N Y, Zhou J J, Wang J. A review of experimental study on floc strength of cohesive sediment. J Sediment Res, 2015(5): 75

    张乃予, 周晶晶, 王捷. 黏性泥沙絮团强度的试验研究综述. 泥沙研究, 2015(5):75
    [3] Sun T C. Solid and Liquid Separation. Changsha: Central South University Press, 2011

    孙体昌. 固液分离. 长沙: 中南大学出版社, 2011
    [4] Chang Q. Water Treatment Flocculation. Beijing: Chemical Industry Press, 2003

    常青. 水处理絮凝学. 北京: 化学工业出版社, 2003
    [5] Tombaz E, Szekeres M. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci, 2006, 34(1-4): 105 doi: 10.1016/j.clay.2006.05.009
    [6] Jarvis P, Jefferson B, Gregory J, et a1. A review of floc strength and breakage. Water Res, 2005, 39(14): 312l
    [7] Gladman B R, Rudman M, Scales P J. The effect of shear on gravity thickening: Pilot scale modelling. Chem Eng Sci, 2010, 65(14): 4293 doi: 10.1016/j.ces.2010.04.010
    [8] Zhang N Y, Zhou J J, Wang J. A review of experimental study on floc structure of cohesive sediment. J Sediment Res, 2016(1): 76

    张乃予, 周晶晶, 王捷. 泥沙絮团结构的试验研究综述. 泥沙研究, 2016(1):76
    [9] Wu A X, Ruan Z E, Bürger R, et al. Optimization of flocculation and settling parameters of tailings slurry by response surface methodology. Miner Eng, 2020, 156: 106488 doi: 10.1016/j.mineng.2020.106488
    [10] Guo C, He Q, Guo L C, et al. Study on the effects of turbulence on cohesive sediment flocculation and settling properties. J Sediment Res, 2019, 44(2): 18

    郭超, 何青, 郭磊城, 等. 紊动对黏性细颗粒泥沙絮凝沉降影响的试验研究. 泥沙研究, 2019, 44(2):18
    [11] Ye J. A Preliminary Study on Flocculation Kinetics and Characteristics of Flocs [Dissertation]. Guangzhou: South China University of Technology, 2011

    叶健. 絮凝动力学及其絮体的特性的初步研究[学位论文]. 广州: 华南理工大学, 2011
    [12] Nguyen T, Heath A, Witt P. Population balance-CFD modelling of fluid flow, solids distribution and flocculation in thickener feedwells // Fifth International Conference on CFD in the Process Industries. Melbourne, 2006
    [13] Owen A T, Nguyen T V, Fawell P D. The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners. Int J Miner Process, 2009, 93(2): 115 doi: 10.1016/j.minpro.2009.07.001
    [14] Greaves D, Boxall J, Mulligan J, et al. Measuring the particle size of a known distribution using the focused beam reflectance measurement technique. Chem Eng Sci, 2008, 63(22): 5410 doi: 10.1016/j.ces.2008.07.023
    [15] Selomulya C, Bushell G, Amal R, et al. Aggregate properties in relation to aggregation conditions under various applied shear environments. Int J Miner Process, 2004, 73(2-4): 295 doi: 10.1016/j.minpro.2003.09.003
    [16] Serra T, Colomer J, Logan B E. Efficiency of different shear devices on flocculation. Water Res, 2008, 42(4-5): 1113 doi: 10.1016/j.watres.2007.08.027
    [17] Oyegbile B, Ay P, Narra S. Flocculation kinetics and hydrodynamic interactions in natural and engineered flow systems: A review. Environ Eng Res, 2016, 21(1): 1 doi: 10.4491/eer.2015.086
    [18] Bubakova P, Pivokonsky M, Filip P. Effect of shear rate on aggregate size and structure in the process of aggregation and at steady state. Powder Technol, 2013, 235: 540 doi: 10.1016/j.powtec.2012.11.014
    [19] Coufort C, Bouyer D, Liné A. Flocculation related to local hydrodynamics in a Taylor–Couette reactor and in a jar. Chem Eng Sci, 2005, 60(8-9): 2179 doi: 10.1016/j.ces.2004.10.038
    [20] Lu S C, Ding Y Q, Guo J Y. Kinetics of fine particle aggregation in turbulence. Adv Colloid Interface Sci, 1998, 78(3): 197 doi: 10.1016/S0001-8686(98)00062-1
    [21] He J G, Liu J, Yuan Y X, et al. A novel quantitative method for evaluating floc strength under turbulent flow conditions. Desalination Water Treat, 2015, 56(7): 1975 doi: 10.1080/19443994.2014.958107
    [22] Bouyer D, Liné A, Do-Quang Z. Experimental analysis of floc size distribution under different hydrodynamics in a mixing tank. AIChE J, 2004, 50(9): 2064 doi: 10.1002/aic.10242
    [23] Spicer P T, Pratsinis S E. Shear-induced flocculation: the evolution of floc structure and the shape of the size distribution at steady state. Wat Res, 1996, 30(5): 1049 doi: 10.1016/0043-1354(95)00253-7
    [24] Wang X C, Tambo N. A study on the morphology and density of flocus-I. The fractal structure of floc. Acta Sci Circum, 2000, 20(3): 257 doi: 10.3321/j.issn:0253-2468.2000.03.001

    王晓昌, 丹保宪仁. 絮凝体形态学和密度的探讨—Ⅰ. 从絮凝体分形构造谈起. 环境科学学报, 2000, 20(3):257 doi: 10.3321/j.issn:0253-2468.2000.03.001
    [25] Glaman B R. The Effect of Shear on Dewatering of Flocculated Suspensions [Dissertation]. Mlebourne: the University of Mlebourne, 2005
  • 加载中
图(10)
计量
  • 文章访问数:  743
  • HTML全文浏览量:  215
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 网络出版日期:  2020-07-07

目录

    /

    返回文章
    返回