• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于面投影微立体光刻技术的三维模拟储层岩心模型制造

孟思炜 孙大兴 俞佳庆 莫翌 邵广斌 薛伟杰 周德开 郑立臣

孟思炜, 孙大兴, 俞佳庆, 莫翌, 邵广斌, 薛伟杰, 周德开, 郑立臣. 基于面投影微立体光刻技术的三维模拟储层岩心模型制造[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.06.10.001
引用本文: 孟思炜, 孙大兴, 俞佳庆, 莫翌, 邵广斌, 薛伟杰, 周德开, 郑立臣. 基于面投影微立体光刻技术的三维模拟储层岩心模型制造[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.06.10.001
MENG Si-wei, SUN Da-xing, YU Jia-qing, MO Yi, SHAO Guang-bin, XUE Wei-jie, ZHOU De-kai, ZHENG Li-chen. Fabrication of a three-dimensional simulated reservoir core model based on area projection micro-stereolithography[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.06.10.001
Citation: MENG Si-wei, SUN Da-xing, YU Jia-qing, MO Yi, SHAO Guang-bin, XUE Wei-jie, ZHOU De-kai, ZHENG Li-chen. Fabrication of a three-dimensional simulated reservoir core model based on area projection micro-stereolithography[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.06.10.001

基于面投影微立体光刻技术的三维模拟储层岩心模型制造

doi: 10.13374/j.issn2095-9389.2020.06.10.001
基金项目: 中国石油集团科学技术研究院有限公司科学研究与技术开发资助项目(2017ycq17);国家重点研发计划政府间国际科技创新合作重点资助专项(2018YFE0196000);国家自然科学基金青年科学基金资助项目(51905135);广东省重点研发计划资助项目(2020B090923003)
详细信息
    通讯作者:

    E-mail:zhenglichen@petrochina.com.cn

  • 中图分类号: TE355

Fabrication of a three-dimensional simulated reservoir core model based on area projection micro-stereolithography

More Information
  • 摘要: 首先搭建具有高精度面投影微立体光刻设备,通过理论分析和实验相结合的方法获得最优打印工艺参数,然后提出一种可用于模拟地层岩心的微球堆叠岩心模型,并通过分析岩心模型成型机理,选取具有更高成型精度的堆积方式对岩心模型进行设计。该模拟岩心制造方法具有对特殊岩心结构制造的高适应性,为实验室显微镜下研究多种EOR技术微观驱替机理提供了新思路。

     

  • 图  1  微立体光刻设备

    Figure  1.  Micro-stereolithography system

    图  2  复杂空间网状结构打印效果图

    Figure  2.  Print effect diagram of a complex space mesh structure

    图  3  岩心SEM图像

    Figure  3.  SEM image of the core of rock

    图  4  岩石颗粒的简化建模型

    Figure  4.  Simplified modeling of rock particles

    图  5  微球堆叠方式

    Figure  5.  Microsphere stacking method

    图  6  简单立方堆积的岩心模型

    Figure  6.  Simple cubic stacked core model

    图  7  岩心模型基本单元

    Figure  7.  Basic unit of the core model

    图  8  非均质岩心制造效果

    Figure  8.  Manufacturing effect of the heterogeneous core

    图  9  微立体光刻岩心制造效果

    Figure  9.  Manufacturing effect of the micro-stereolithography core

    图  10  逐层打印效果

    Figure  10.  Layer-by-layer printing effect

    图  11  岩心缺陷结构

    Figure  11.  Core defect structure

    图  12  岩心微球成型精度表征

    Figure  12.  Characterization of core microsphere forming accuracy

    图  13  不同材料的微球堆叠岩心模型成型效果. (a)zDental Model沙黄树脂成型岩心;(b)自配制树脂体系成型岩心

    Figure  13.  Forming effect of the core model of microsphere accumulation by different materials: (a) the core of zDental Model sand yellow resin molding; (b) self-prepared resin system forming core

  • [1] 戴彩丽, 方吉超, 焦保雷, 等. 中国碳酸盐岩缝洞型油藏提高采收率研究进展. 中国石油大学学报(自然科学版), 2018, 42(6):67)

    Dai C L, Fang J C, Jiao B L, et al. Development of the research on EOR for carbonate fractured-vuggy reservoirs in China. 中国石油大学学报, 2018, 42(6): 67
    [2] Zhu W Y, Yue M, Liu Y F, et al. Research progress on tight oil exploration in China. Chin J Eng, 2019, 41(9): 1103

    朱维耀, 岳明, 刘昀枫, 等. 中国致密油藏开发理论研究进展. 工程科学学报, 2019, 41(9):1103
    [3] Samala R, Chaudhuri A, Vishnudas R, et al. Numerical analysis of viscous fingering and oil recovery by surfactant and polymer flooding in five-spot setup for water and oil-wet reservoirs. Geomech Geophys Geo-Energy Geo-Resour, 2020, 6(1): 3 doi: 10.1007/s40948-019-00124-1
    [4] Ma K, Liontas R, Conn C A, et al. Visualization of improved sweep with foam in heterogeneous porous media using microfluidics. Soft Matter, 2012, 8(41): 10669 doi: 10.1039/c2sm25833a
    [5] Lv Q C, Li Z M, Li B F, et al. Study of nanoparticle-surfactant-stabilized foam as a fracturing fluid. Ind Eng Chem Res, 2015, 54(38): 9468 doi: 10.1021/acs.iecr.5b02197
    [6] Olayiwola S O, Dejam M. A comprehensive review on interaction of nanoparticles with low salinity water and surfactant for enhanced oil recovery in sandstone and carbonate reservoirs. Fuel, 2019, 241: 1045 doi: 10.1016/j.fuel.2018.12.122
    [7] Hendraningrat L, Li S D, Torsæter O. A coreflood investigation of nanofluid enhanced oil recovery. J Petrol Sci Eng, 2013, 111: 128 doi: 10.1016/j.petrol.2013.07.003
    [8] Guang X J, Dou N H, Jia Y P, et al. Application prospects of nanotechnology in petroleum engineering. Drill Prod Technol, 2019, 42(3): 34 doi: 10.3969/J.ISSN.1006-768X.2019.03.10

    光新军, 豆宁辉, 贾云鹏, 等. 纳米技术在石油工程中的应用前景. 钻采工艺, 2019, 42(3):34 doi: 10.3969/J.ISSN.1006-768X.2019.03.10
    [9] Hamida T, Babadagli T. Displacement of oil by different interfacial tension fluids under ultrasonic waves. Colloids Surf A, 2008, 316(1-3): 176 doi: 10.1016/j.colsurfa.2007.09.012
    [10] Ge D. Study on Stability of ASP Flooding Sludge and Ultrasonic-Demulsification Oil Removal [Dissertation]. Daqing: Northeast Petroleum University, 2018.

    葛丹. 三元复合驱油泥稳定性及超声—破乳洗油的研究[学位论文]. 大庆: 东北石油大学, 2018.
    [11] Liu W. Discussion on application of microbial oil recovery technology in oil exploitation. Chem Eng Des Commun, 2017, 43(7): 63 doi: 10.3969/j.issn.1003-6490.2017.07.060

    刘卫. 浅谈石油开采中微生物采油技术的应用. 化工设计通讯, 2017, 43(7):63 doi: 10.3969/j.issn.1003-6490.2017.07.060
    [12] Liu J, Wang C, Sun C Y. Application of microbial flooding in oil fields. Chem Eng Des Commun, 2019, 45(1): 33 doi: 10.3969/j.issn.1003-6490.2019.01.030

    刘杰, 王超, 孙朝阳. 微生物驱油在油田的应用. 化工设计通讯, 2019, 45(1):33 doi: 10.3969/j.issn.1003-6490.2019.01.030
    [13] de Araujo L L G C, Sodré L G P, Brasil L R, et al. Microbial enhanced oil recovery using a biosurfactant produced by Bacillus safensis isolated from mangrove microbiota - Part I biosurfactant characterization and oil displacement test. J Petrol Sci Eng, 2019, 180: 950 doi: 10.1016/j.petrol.2019.06.031
    [14] Nazina T, Sokolova D, Grouzdev D, et al. The potential application of microorganisms for sustainable petroleum recovery from heavy oil reservoirs. Sustainability, 2020, 12(1): 15
    [15] Haq B, Liu J S, Liu K Y, et al. The role of biodegradable surfactant in microbial enhanced oil recovery. J Petrol Sci Eng, 2020, 189: 106688 doi: 10.1016/j.petrol.2019.106688
    [16] Dong X Q, Ma X Y. Technical measures for three-stage oil recovery. Chem Eng Des Commun, 2017, 43(7): 42 doi: 10.3969/j.issn.1003-6490.2017.07.039

    董喜庆, 马晓燕. 三次采油工艺技术措施. 化工设计通讯, 2017, 43(7):42 doi: 10.3969/j.issn.1003-6490.2017.07.039
    [17] Xu L. Pore Network Model Construction of Sandstone Reservoir and Application [Dissertation]. Chengdu: Southwest Petroleum University, 2015.

    许丽. 砂岩油藏孔隙网络模型构造及应用研究[学位论文]. 成都: 西南石油大学, 2015.
    [18] Sun Z. A method of extracting pore date of tight sandstone based on 3D CT scanning image. J North China Inst Sci Technol, 2020, 17(1): 6 doi: 10.3969/j.issn.1672-7169.2020.01.002

    孙泽. 基于三维CT扫描图像的致密砂岩孔隙数据提取方法. 华北科技学院学报, 2020, 17(1):6 doi: 10.3969/j.issn.1672-7169.2020.01.002
    [19] Abgrall P, Gue A M. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. J Micromech Microeng, 2007, 17(5): R15 doi: 10.1088/0960-1317/17/5/R01
    [20] Xu K, Zhu P X, Huh C, et al. Microfluidic investigation of nanoparticles' role in mobilizing trapped oil droplets in porous media. Langmuir, 2015, 31(51): 13673 doi: 10.1021/acs.langmuir.5b03733
    [21] Beauchamp M J, Nordin G P, Woolley A T. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal Bioanal Chem, 2017, 409: 4311 doi: 10.1007/s00216-017-0398-3
    [22] Vavra E D, Zeng Y C, Xiao S Y, et al. Microfluidic devices for characterizing pore-scale event processes in porous media for oil recovery applications. J Vis Exp, 2018, 131: e56592
    [23] Li H X, Zhang T J. Imaging and characterizing fluid invasion in micro-3D printed porous devices with variable surface wettability. Soft Matter, 2019, 15(35): 6978 doi: 10.1039/C9SM01182J
    [24] Huang D L. Study of the Fluid Flow in Ultra-low Permeability Reservoir with Fractures and its Application at Daqing Olifield [Dissertation]. Daqing: Daqing Petroleum Institute, 2010.

    黄德利. 大庆油田特低渗透裂缝性油藏渗流特征研究及应用[学位论文]. 大庆: 大庆石油学院, 2010.
    [25] Ding X Y. Pore Structure Characteristics of F Oil Reservoir in Daqing and the Impact on the Seepage [Dissertation]. Daqing: Northeast Petroleum University, 2013.
  • 加载中
图(13)
计量
  • 文章访问数:  770
  • HTML全文浏览量:  507
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-10
  • 网络出版日期:  2020-12-31

目录

    /

    返回文章
    返回