• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于有向权值网络的航班运行风险传播与控制

王岩韬 杨志远 刘锟 谢春生

王岩韬, 杨志远, 刘锟, 谢春生. 基于有向权值网络的航班运行风险传播与控制[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.06.15.002
引用本文: 王岩韬, 杨志远, 刘锟, 谢春生. 基于有向权值网络的航班运行风险传播与控制[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.06.15.002
WANG Yan-tao, YANG Zhi-yuan, LIU Kun, XIE Chun-sheng. Flight operation risk propagation and control based on a directional-weighted complex network[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.06.15.002
Citation: WANG Yan-tao, YANG Zhi-yuan, LIU Kun, XIE Chun-sheng. Flight operation risk propagation and control based on a directional-weighted complex network[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.06.15.002

基于有向权值网络的航班运行风险传播与控制

doi: 10.13374/j.issn2095-9389.2020.06.15.002
基金项目: 国家自然科学基金资助项目(U193310)
详细信息
    通讯作者:

    E-mail:CAUCwyt@126.com

  • 中图分类号: N945.24;U8;V355.2

Flight operation risk propagation and control based on a directional-weighted complex network

More Information
  • 摘要: 为了分析航班运行风险传播过程,进而有效控制保障飞行安全,基于复杂网络理论,首先参照民航局咨询通告选取机组、航空器、运行环境共29个终端因素作为网络节点,统计民航安全监察记录,根据事件中节点关系,构建无向网络;统计前后节点间的作用关系和发生概率,提出一种有向带权的航班运行风险网络;然后,引入改进感染率和改进恢复率概念,构建一种适用于航班运行风险传播分析的改进SIR(Susceptible-infected-recovered)模型;定义感染起始范围,最后采取多参数控制方式,大规模计算该有向带权网络的传播和控制过程。结果表明:有向网的平均最短路径为1.788,属于小世界网络;参照使用民航常规管控措施,有向网节点感染下降幅度可达到37.4%;对入度值排序前3或前4的节点控制后,感染节点峰值下降率高达50.6%和58.1%,网络传播抑制明显。结果证实:在该航班运行风险有向带权网络中,按入度值控制节点对抑制风险传播最为有效。

     

  • 图  1  无向网络

    Figure  1.  Undirected network

    图  2  有向带权网络

    Figure  2.  Directional weighted network

    图  3  改进SIR模型原理图

    Figure  3.  Schematic of the improved SIR model

    图  4  控制节点后有向带权网络传播结果

    Figure  4.  Directed network propagation results after controlling the nodes

    图  5  按不同控制方式的改进SIR模型变化趋势图

    Figure  5.  Change trend of the improved SIR model based on different control methods

    表  1  风险网络节点

    Table  1.   Risk network node

    Node typeNode numberNode nameNode typeNode numberNode name
    Crew risk factors1Crew qualification level matchingOperational environment
    risk factors
    14Temporary air diversion
    2Crew English level15Controller’s radiotelephone communication level
    3Crew collaboration
    4Crew technical characteristics16Large areas of thunderstorms, moderate
    or severe icy areas, and turbulence
    in the airway
    5Captain flight experience
    6Captain's familiarity with the airport17Rain, snow, fog, and other
    weather in airport
    7Copilot flying experience
    8Copilot’s familiarity with the airport18Runway friction effect
    9Transient fatigue19Airport landing standards
    10Cumulative fatigue20Flight procedure complexity
    11Special passenger pressure21Approach terrain and obstacles
    12Flight inspection22Airport equipment and facilities status
    13Change route before takeoff23Runway length and slope
    Aircraft risk factors27Landing approach involves
    equipment failure
    24Airport temporary restriction notice
    28Aircraft failure rate25Destination airport busyness
    29Navigation database encoding26Alternate airport busyness
    下载: 导出CSV

    表  2  权值设置规则

    Table  2.   Weight setting rules

    Weight settingProbability of previous node affecting the next nodeStatistical frequency/probability
    1High probabilityStatistical frequency ≥ 100, occurrence probability ϵ (3.94 × 10−3,1]
    0.8More likely[50, 100; 1.97 × 10−3, 3.94 × 10−3]
    0.5May occur[10, 50; 3.94 × 10−4, 1.97 × 10−3]
    0.2Low probability[1, 10; 3.94 × 10−5, 3.94 × 10−4]
    0Typically does not affect the next nodeStatistical frequency = 0; [0, 3.94 × 10−5]
    下载: 导出CSV

    表  3  网络参数(部分)

    Table  3.   Network parameters (partial)

    Node numberTotal degree valueIn-degree valueOut-degree valueClustering coefficientBetweenness
    111740.8035710.000374
    25140.8095240.000220
    3282170.3809520.037671
    4221390.5285710.013475
    5231670.4558820.016636
    93926130.3046150.152202
    103924150.3369570.182254
    20259160.4117650.066644
    2510550.6190480.005644
    2610190.6805560.001102
    2713490.7000000.001223
    下载: 导出CSV
  • [1] Coleman M E, Marks H M. Qualitative and quantitative risk assessment. Food Control, 1999, 10(4-5): 289 doi: 10.1016/S0956-7135(99)00052-3
    [2] Janic M. An assessment of risk and safety in civil aviation. J Air Transp Manage, 2000, 6(1): 43 doi: 10.1016/S0969-6997(99)00021-6
    [3] Bolczak C N, Fong V, Jehlen R. NextGen flight security risk assessment information concept//2009 IEEE/AIAA 28th Digital Avionics Systems Conference. Orlando, 2009: 6
    [4] Sun R S, Liu H H. Assessment theory and practice for airline safety. China Saf Sci J, 1999, 9(3): 69 doi: 10.3969/j.issn.1003-3033.1999.03.014

    孙瑞山, 刘汉辉. 航空公司安全评估理论与实践. 中国安全科学学报, 1999, 9(3):69 doi: 10.3969/j.issn.1003-3033.1999.03.014
    [5] Sun R S, Tang P. Rapid assessment tool for flight safety risk. J Transp Inf Saf, 2013, 31(2): 88 doi: 10.3963/j.issn.1674-4861.2013.02.020

    孙瑞山, 唐品. 航班飞行安全风险快速评估工具研究. 交通信息与安全, 2013, 31(2):88 doi: 10.3963/j.issn.1674-4861.2013.02.020
    [6] Wang Y T, Li R, Lu F, et al. Risk assessment system of flight operation based on multiple factor analysis. J Tianjin Polytech Univ, 2014, 33(3): 84 doi: 10.3969/j.issn.1671-024X.2014.03.017

    王岩韬, 李蕊, 卢飞, 等. 基于多因素分析的航班运行风险评估体系. 天津工业大学学报, 2014, 33(3):84 doi: 10.3969/j.issn.1671-024X.2014.03.017
    [7] Wang Y T, Li R, Lu F, et al. Flight operation key risk factors inference based on operation data. J Transp Syst Eng Inf Technol, 2016, 16(1): 182 doi: 10.3969/j.issn.1009-6744.2016.01.029

    王岩韬, 李蕊, 卢飞, 等. 基于运行数据的航班运行关键风险因素推断. 交通运输系统工程与信息, 2016, 16(1):182 doi: 10.3969/j.issn.1009-6744.2016.01.029
    [8] Wang Y T, Zhao Y F. Research on flight operations risk identification based on multi-algorithm collaboration. China Saf Sci J, 2018, 28(6): 166

    王岩韬, 赵嶷飞. 基于多算法协作的航班运行风险辨识研究. 中国安全科学学报, 2018, 28(6):166
    [9] Wang Y T, Liu H, Tang J X, et al. Dynamic prediction technology in the application of flight operation risk. Control Decis, 2019, 34(9): 1946

    王岩韬, 刘宏, 唐建勋, 等. 动态预测技术在航班运行风险中的应用. 控制与决策, 2019, 34(9):1946
    [10] Wang Y T, Li J L, Gu R P. Flight operation risk prediction model based on the multivariate chaotic time series. Chin J Eng, 2020, 42(12): 1664

    王岩韬, 李景良, 谷润平. 基于多变量混沌时间序列的航班运行风险预测模型. 工程科学学报, 2020, 42(12):1664
    [11] Lalis A, Socha V, Kraus J, et al. Conditional and unconditional safety performance forecasts for aviation predictive risk management//2018 IEEE Aerospace Conference. Big Sky, 2018: 1
    [12] Zhang X G, Mahadevan S. Ensemble machine learning models for aviation incident risk prediction. Decis Support Syst, 2019, 116: 48 doi: 10.1016/j.dss.2018.10.009
    [13] Zhang J K. Study of Flight Operations Risk Management on Shenzhen Airlines [Dissertation]. Lanzhou: Lanzhou University, 2019

    张继凯. 深圳航空公司航班运行风险管理研究[学位论文]. 兰州: 兰州大学, 2019
    [14] Belkoura S, Cook A, Maria Pena J, et al. On the multi-dimensionality and sampling of air transport networks. Transp Res Part E, 2016, 94: 95 doi: 10.1016/j.tre.2016.07.013
    [15] Voltes-Dorta A, Rodriguez-Deniz H, Suau-Sanchez P. Vulnerability of the European air transport network to major airport closures from the perspective of passenger delays: Ranking the most critical airports. Transp Res Part A, 2017, 96: 119
    [16] Wu X P, Yang H Y, Han S C. Analysis of properties and delay propagation of air traffic based on complex network. Acta Aeron Astron Sin, 2017, 38(Suppl1): 108

    武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析. 航空学报, 2017, 38(增刊1): 108
    [17] Wang X L, Pan W H, Zhao M. Vulnerability of air traffic interdependent network. Acta Aeron Astron Sin, 2018, 39(12): 268

    王兴隆, 潘维煌, 赵末. 空中交通相依网络的脆弱性研究. 航空学报, 2018, 39(12):268
    [18] Qi Y N, Gao J D. Cascading failure invulnerability and optimization strategy of airspace sector network. Acta Aeron Astron Sin, 2018, 39(12): 349

    齐雁楠, 高经东. 空域扇区网络级联失效抗毁性及优化策略. 航空学报, 2018, 39(12):349
    [19] Wu M G, Ye Z L, Wen X X, et al. Air traffic complexity recognition method based on complex networks. J Beijing Univ Aeron Astron, 2020, 46(5): 839

    吴明功, 叶泽龙, 温祥西, 等. 基于复杂网络的空中交通复杂性识别方法. 北京航空航天大学学报, 2020, 46(5):839
    [20] Wang Y T, Liu Y. Flight operation risk propagation based on complex network. J Transp Syst Eng Inf Technol, 2020, 20(1): 198

    王岩韬, 刘毓. 基于复杂网络的航班运行风险传播分析. 交通运输系统工程与信息, 2020, 20(1):198
    [21] Flight Standard Administration of CAAC. Air Carrier Operation Control Risk Control System Implementation Guielines. 2015-09-28

    中国民用航空总局飞行标准司. 航空承运人运行控制风险管控系统实施指南, 2015-09-28
    [22] Zhao Y Q, Qin X, Li Z X, et al. Dynamic modeling and simulation of hazard and risk evolution for mine tailing ponds. J Univ Sci Technol Beijing, 2014, 36(9): 1158

    赵怡晴, 覃璇, 李仲学, 等. 尾矿库隐患及风险演化系统动力学模拟与仿真. 北京科技大学学报, 2014, 36(9):1158
    [23] Barabási A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509 doi: 10.1126/science.286.5439.509
    [24] Ni S J. Research on Modeling of Infectious Disease Spreading Based on Complex Network Theory [Dissertation]. Beijing: Tsinghua University, 2009

    倪顺江. 基于复杂网络理论的传染病动力学建模与研究[学位论文]. 北京: 清华大学, 2009
    [25] Reluga T C, Medlock J. Resistance mechanisms matter in SIR models. Math Biosci Eng, 2007, 4(3): 553 doi: 10.3934/mbe.2007.4.553
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  471
  • HTML全文浏览量:  131
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-15
  • 网络出版日期:  2020-11-14

目录

    /

    返回文章
    返回