• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴应力下烟煤氧化‒自燃灾变温度

徐永亮 刘泽健 步允川 陈蒙磊 吕志广 王兰云

徐永亮, 刘泽健, 步允川, 陈蒙磊, 吕志广, 王兰云. 单轴应力下烟煤氧化‒自燃灾变温度[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.09.02.004
引用本文: 徐永亮, 刘泽健, 步允川, 陈蒙磊, 吕志广, 王兰云. 单轴应力下烟煤氧化‒自燃灾变温度[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.09.02.004
XU Yong-liang, LIU Ze-jian, BU Yun-chuan, CHEN Meng-lei, LÜ Zhi-guang, WANG Lan-yun. Catastrophic temperature of oxidation-spontaneous-combustion for bituminous coal under uniaxial stress[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.09.02.004
Citation: XU Yong-liang, LIU Ze-jian, BU Yun-chuan, CHEN Meng-lei, LÜ Zhi-guang, WANG Lan-yun. Catastrophic temperature of oxidation-spontaneous-combustion for bituminous coal under uniaxial stress[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.09.02.004

单轴应力下烟煤氧化‒自燃灾变温度

doi: 10.13374/j.issn2095-9389.2020.09.02.004
基金项目: 国家自然科学基金资助项目(52074108,51874124);中国博士后科学基金资助项目(2017M612397,2018T110725)
详细信息
    通讯作者:

    E-mail:wlyhpu@163.com

  • 中图分类号: TD75

Catastrophic temperature of oxidation-spontaneous-combustion for bituminous coal under uniaxial stress

More Information
  • 摘要: 为探究不同埋藏深度裂隙煤体氧化‒自燃过程在单轴应力作用下的影响规律,本文通过荷载加压煤自燃特性实验平台,采用新疆硫磺沟矿区烟煤煤样,开展了施加单轴应力在0~8 MPa下的贫氧环境程序升温试验。根据加压试验中烟煤产生气体随温度的变化关系,计算了烟煤在单轴应力下升温过程表观活化能和耗氧速率。结合煤自燃氧化动力学和热解参数,阐述了单轴应力下煤体由缓慢氧化到快速氧化的非线性发展过程,并基于突变理论解算出试验条件下烟煤氧化‒燃烧过程的突变温度和临界温度,确定出4个特征参数:突变温度$ {T}_{\mathrm{C}\mathrm{O}} $(CO表征)和$ {T}_{\mathrm{H}\mathrm{Y}} $(耗氧速率表征),临界温度$ {T}_{\mathrm{C}\mathrm{O}}^{'} $(CO表征)和$ {T}_{\mathrm{H}\mathrm{Y}}^{'} $(耗氧速率表征),并分析了不同特征参数随单轴应力的变化规律。结果表明:热解气体浓度、表观活化能和耗氧速率随单轴应力增大呈先增大后减小再增大的三次函数规律(其中1.8和5.5 MPa时为临界轴压),1.8 MPa时表观活化能和各项特征参数数值最低,煤氧反应速率最快,耗氧速率最高;单轴应力为5.5 MPa时耗氧速率最大,煤体新生裂隙最多;单轴应力对$ {T}_{\mathrm{C}\mathrm{O}} $特征参数影响最大,煤自燃缓慢过渡到快速氧化的温度指标,由CO浓度表征的突变温度$ {T}_{\mathrm{C}\mathrm{O}} $表征最为准确。该研究结果对于矿井不同埋深煤自燃预警和防控具有重要理论指导意义。

     

  • 图  1  程序升温CO体积分数随温度关系变化曲线

    Figure  1.  Changes in CO volume fraction with increases in temperature in temperature-programmed experiments

    图  2  程序升温C2H4浓度随温度关系变化曲线

    Figure  2.  Changes in C2H4 volume fraction with increases in temperature in temperature-programmed experiments

    图  3  煤样在不同应力下的表观活化能

    Figure  3.  Apparent activation energy of coal samples under different levels of stress

    图  4  耗氧速率随温度变化曲线

    Figure  4.  Oxygen consumption rate curves with temperature

    图  5  煤自燃进程突变模型示意图

    Figure  5.  Schematic diagram of the catastrophe model for coal combustion process

    图  6  轴压4 MPa时ln$ {k}_{1}$(a)和ln$ {k}_{2}$(b)与(−1/T)关系图

    Figure  6.  Diagram of relationship of ln$ {k}_{1} $ (a) and ln$ {k}_{2} $ (b) with (−1/T) under axial pressure of 4 MPa

    图  7  突变温度(a)和临界温度(b)随单轴应力的变化

    Figure  7.  Changes in catastrophic temperature (a) and critical temperature (b) with uniaxial stress

    表  1  实验煤样的工业分析与元素分析(质量分数)

    Table  1.   Proximate and ultimate analyses for the experimental coal %

    Proximate analysisUltimate analysis
    MadAadVdafFCadCdafHdafNdaf
    6.4315.7141.5136.3570.865.440.69
    下载: 导出CSV

    表  2  不同单轴应力下煤的孔隙率

    Table  2.   Porosity of coal under different levels of uniaxial stress

    0 MPa2 MPa4 MPa6 MPa8 MPa
    0.4760.4470.4000.3920.350
    下载: 导出CSV

    表  3  不同单轴应力下的突变温度

    Table  3.   Catastrophic temperature under different levels of uniaxial stress

    Uniaxial stresses /MPaTCO/℃THY/℃
    083.399.1
    292.1121.0
    490.0117.3
    685.192.0
    8131.1137.0
    下载: 导出CSV

    表  4  不同单轴应力下煤样临界温度

    Table  4.   Critical temperature of coal sample under different levels of uniaxial stresses

    Uniaxial stresses /MPa$ {T}_{\mathrm{C}\mathrm{O}}^{'} $/℃$ {T}_{\mathrm{H}\mathrm{Y}}^{'} $/℃
    070.060.0
    290.070.0
    480.070.0
    670.060.0
    8128.2128.2
    下载: 导出CSV

    表  5  单轴应力与特征参数的灰色关联度

    Table  5.   Grey relational grades of characteristic and axial compression parameters

    Uniaxial stresses /MPa$ {T}_{\mathrm{C}\mathrm{O}} $$ {T}_{\mathrm{H}\mathrm{Y}} $$ {T}_{\mathrm{C}\mathrm{O}}^{'} $$ {T}_{\mathrm{H}\mathrm{Y}}^{'} $Average value
    20.860.670.770.540.71
    40.810.840.830.590.77
    60.770.600.660.520.64
    80.950.890.790.620.82
    下载: 导出CSV
  • [1] Xu Y H, Xu M G, Xu J C. Discussion on several problems in indication gas prediction of coal spontaneous combustion. Min Saf Environ Prot, 2005, 32(1): 16 doi: 10.3969/j.issn.1008-4495.2005.01.007

    许延辉, 许满贵, 徐精彩. 煤自燃火灾指标气体预测预报的几个关键问题探讨. 矿业安全与环保, 2005, 32(1):16 doi: 10.3969/j.issn.1008-4495.2005.01.007
    [2] Zhao H G, Zhang D M, Liu C, et al. Mechanical characteristics and permeability evolution rule of coal under loading-unloading conditions. Chin J Eng, 2016, 38(12): 1674

    赵宏刚, 张东明, 刘超, 等. 加卸载下原煤力学特性及渗透演化规律. 工程科学学报, 2016, 38(12):1674
    [3] Lou Q, He X Q, Song D Z, et al. Time-frequency characteristics of acoustic-electric signals induced by coal fracture under uniaxial compression based on full-waveform. Chin J Eng, 2019, 41(7): 874

    娄全, 何学秋, 宋大钊, 等. 基于全波形的煤样单轴压缩破坏声电时频特征. 工程科学学报, 2019, 41(7):874
    [4] Yu Y J, Zhang H, Zhang C H, et al. Effects of temperature and stress on permeability of standard coal briquette specimen. J China Coal Soc, 2013, 38(6): 936

    于永江, 张华, 张春会, 等. 温度及应力对成型煤样渗透性的影响. 煤炭学报, 2013, 38(6):936
    [5] Zhang Z P, Gao M Z, Zhang Z T, et al. Research on permeability characteristics of raw coal in complete stress-strain process under different gas pressure. J China Coal Soc, 2015, 40(4): 836

    张朝鹏, 高明忠, 张泽天, 等. 不同瓦斯压力原煤全应力应变过程中渗透特性研究. 煤炭学报, 2015, 40(4):836
    [6] Zhou F B, Shao H, Li J H, et al. Experimental research on combustion product formation during coal spontaneous combustion under reduced oxygen concentrations. J China Univ Min Technol, 2010, 39(6): 808

    周福宝, 邵和, 李金海, 等. 低O2含量条件下煤自燃产物生成规律的实验研究. 中国矿业大学学报, 2010, 39(6):808
    [7] Wen H, Zhao X T, Wang W F, et al. Analysis on characteristics of indicator gases of spontaneous combustion of different coals. Coal Convers, 2020, 43(1): 16

    文虎, 赵向涛, 王伟峰, 等. 不同煤体自燃指标性气体函数模型特征分析. 煤炭转化, 2020, 43(1):16
    [8] Zhu J G, Dai G L, Tang M Y, et al. Experimental study on spontaneous combustion prediction index gas of water immersed long flame coal. Coal Sci Technol, 2020, 48(5): 89

    朱建国, 戴广龙, 唐明云, 等. 水浸长焰煤自燃预测预报指标气体试验研究. 煤炭科学技术, 2020, 48(5):89
    [9] Tang H, Guo J, Liu Y, et al. Experimental study on index optimization of coal spontaneous combustion prediction under high temperature. Saf Coal Mines, 2018, 49(6): 11

    唐洪, 郭军, 刘荫, 等. 高地温条件下的煤自燃预报指标优选实验研究. 煤矿安全, 2018, 49(6):11
    [10] Zhong X X, Wang D M, Yin X D. Test method of critical temperature of coal spontaneous combustion based on the temperature programmed experiment. J China Coal Soc, 2010, 35(Suppl 1): 128

    仲晓星, 王德明, 尹晓丹. 基于程序升温的煤自燃临界温度测试方法. 煤炭学报, 2010, 35(增刊1): 128
    [11] Kondratiev A, Ilyushechkin A. Flow behaviour of crystallising coal ash slags: Shear viscosity, non-Newtonian flow and temperature of critical viscosity. Fuel, 2018, 224: 783 doi: 10.1016/j.fuel.2018.03.031
    [12] Gbadamosi A R, Onifade M, Genc B, et al. Analysis of spontaneous combustion liability indices and coal recording standards/basis. Int J Min Sci Technol, 2020, 30(5): 723 doi: 10.1016/j.ijmst.2020.03.016
    [13] Jiao X M, Wang D M, Zhong X X, et al. The analysis of influencing factors on coal spontaneous combustion calculate critical temperature based on CO concentration. Saf Coal Mines, 2012, 43(3): 11

    焦新明, 王德明, 仲晓星, 等. 基于CO浓度求解煤自燃临界温度的影响因素分析. 煤矿安全, 2012, 43(3):11
    [14] Zhang H M. Experimental on gaseous seepage properties of sandstone in complete stress-strain process. J China Coal Soc, 2009, 34(8): 1063 doi: 10.3321/j.issn:0253-9993.2009.08.011

    张宏敏. 砂岩全应力‒应变过程气体渗透特性实验. 煤炭学报, 2009, 34(8):1063 doi: 10.3321/j.issn:0253-9993.2009.08.011
    [15] Xu Y L, Zuo N, Liang P P, et al. Study on influence of uniaxial stress on spontaneous combustion characteristic parameters and thermal conductivity of coal. J Saf Sci Technol, 2018, 14(4): 32

    徐永亮, 左宁, 梁浦浦, 等. 单轴应力对煤自燃特性参数和导热系数的影响研究. 中国安全生产科学技术, 2018, 14(4):32
    [16] Song Z Y. Thermogravimetric and Numerical Investigations on Couplings of Chemical Reaction, Hydraulic Field and Thermal Field of Coal Fires [Dissertation]. Beijing: China University of Mining and Technology, 2015

    宋泽阳. 煤火氧化燃烧反应-流场-温度场耦合TGA实验与数值模拟 [学位论文]. 北京: 中国矿业大学(北京), 2015
    [17] Xu Y L, Wang L Y, Song Z P, et al. Characteristics and critical parameters of coal spontaneous combustion at low temperature stage based on CPT method. J China Coal Soc, 2017, 42(4): 935

    徐永亮, 王兰云, 宋志鹏, 等. 基于交叉点法的煤自燃低温氧化阶段特性和关键参数. 煤炭学报, 2017, 42(4):935
    [18] Li Z H, Qi F, Du C S, et al. Measurement of dynamic parameters of coal oxidation at low temperature based on oxygen consumption. J Min Saf Eng, 2007, 24(2): 137 doi: 10.3969/j.issn.1673-3363.2007.02.003

    李增华, 齐峰, 杜长胜, 等. 基于吸氧量的煤低温氧化动力学参数测定. 采矿与安全工程学报, 2007, 24(2):137 doi: 10.3969/j.issn.1673-3363.2007.02.003
    [19] Kudynska J, Buckmaster H A. Low-temperature oxidation kinetics of high-volatile bituminous coal studied by dynamic in situ 9 GHz c.w.e.p.r. spectroscopy. Fuel, 1996, 75(7): 872 doi: 10.1016/0016-2361(96)00014-2
    [20] Copard Y, Disna J R, Becq-Giraudon J F, et al. Erroneous coal maturity assessment caused by low temperature oxidation. Int J Coal Geol, 2004, 58(3): 171 doi: 10.1016/j.coal.2003.10.007
    [21] Zhu H Q, Wang H Y, Shen J. et al. Experiment study on oxygen concentration affected to oxygen consumption rate of loose coal. Coal Eng, 2013, 45(8): 110

    朱红青, 王海燕, 沈静, 等. 氧浓度对松散煤耗氧速率影响的实验研究. 煤炭工程, 2013, 45(8):110
    [22] Onifade M, Genc B. A review of research on spontaneous combustion of coal. Int J Min Sci Technol, 2020, 30(3): 303 doi: 10.1016/j.ijmst.2020.03.001
    [23] Liu W, Qin Y P, Qiao T, et al. Experimental demonstration on calculation of oxygen consumption rate and CO generation rate in coal spomtaneous combustion. J China Univ Min Technol, 2016, 45(6): 1141

    刘伟, 秦跃平, 乔珽, 等. 煤耗氧速率与CO生成速率的计算及实验论证. 中国矿业大学学报, 2016, 45(6):1141
    [24] Wang D M, Xin H H, Qi X Y, et al. Mechanism and relationships of elementary reactions in spontaneous combustion of coal: The coal oxidation kinetics theory and application. J China Coal Soc, 2014, 39(8): 1667

    王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系: 煤氧化动力学理论及应用. 煤炭学报, 2014, 39(8):1667
    [25] Guo D Y, Li J N, Wang Y K, et al. Early-warning model of coal and gas outburst based on the stick-slip and catastrophe theory. J Univ Sci Technol Beijing, 2013, 35(11): 1407

    郭德勇, 李佳乃, 王彦凯. 基于黏滑失稳与突变理论的煤与瓦斯突出预警模型. 北京科技大学学报, 2013, 35(11):1407
    [26] Zhang Y T, Li Y Q, Deng J, et al. Study on catastrophe characteristics of coal spontaneous combustion. China Saf Sci J, 2015, 25(1): 78

    张玉涛, 李亚清, 邓军, 等. 煤炭自燃灾变过程突变特性研究. 中国安全科学学报, 2015, 25(1):78
    [27] Zhang H Y, Geng Z. Novel interpretation for Levenberg-Marquardt algorithm. Comput Eng Appl, 2009, 45(19): 5 doi: 10.3778/j.issn.1002-8331.2009.19.002

    张鸿燕, 耿征. Levenberg-Marquardt算法的一种新解释. 计算机工程与应用, 2009, 45(19):5 doi: 10.3778/j.issn.1002-8331.2009.19.002
    [28] Sun G D, Guan X, Yi X, et al. Grey relational analysis between hesitant fuzzy sets with applications to pattern recognition. Expert Syst Appl, 2018, 92: 521 doi: 10.1016/j.eswa.2017.09.048
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  148
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-02
  • 网络出版日期:  2021-04-22

目录

    /

    返回文章
    返回