• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胀断连杆用高碳微合金钢连铸大方坯的铸态组织

夏勇 李亮 王璞 铁占鹏 兰鹏 唐海燕 张家泉

夏勇, 李亮, 王璞, 铁占鹏, 兰鹏, 唐海燕, 张家泉. 胀断连杆用高碳微合金钢连铸大方坯的铸态组织[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.09.03.001
引用本文: 夏勇, 李亮, 王璞, 铁占鹏, 兰鹏, 唐海燕, 张家泉. 胀断连杆用高碳微合金钢连铸大方坯的铸态组织[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.09.03.001
XIA Yong, LI Liang, WANG Pu, Tie Zhan-peng, LAN Peng, TANG Hai-yan, ZHANG Jia-quan. Characteristics of the as-cast high-carbon microalloyed continuous casting bloom steel for expansion-break connecting rods[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.09.03.001
Citation: XIA Yong, LI Liang, WANG Pu, Tie Zhan-peng, LAN Peng, TANG Hai-yan, ZHANG Jia-quan. Characteristics of the as-cast high-carbon microalloyed continuous casting bloom steel for expansion-break connecting rods[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.09.03.001

胀断连杆用高碳微合金钢连铸大方坯的铸态组织

doi: 10.13374/j.issn2095-9389.2020.09.03.001
基金项目: 国家自然科学基金资助项目(51874033,U1860111)
详细信息
    通讯作者:

    E-mail:jqzhang@metall.ustb.edu.cn

  • 中图分类号: TF777.2

Characteristics of the as-cast high-carbon microalloyed continuous casting bloom steel for expansion-break connecting rods

More Information
  • 摘要: 胀断连杆是汽车精密传动用高端产品,需具高强高韧和裂解加工脆性解理断裂特性。连铸化生产高碳易切削胀断连杆用微合金非调质钢是当前的发展方向。基于大方坯连铸生产典型工艺及其铸态组织、成分均匀性分析,研究了胀断连杆加工过程常见断口形貌不合的钢坯遗传性因素。以常用德系C70S6钢为例,采用250 mm×280 mm断面弧形连铸机,解析其在一定结晶器电磁搅拌条件下所浇铸大方坯的铸态低倍结构和枝晶形貌,并分析其不同晶区的成分分布特点。结果表明,当前连铸条件下大方坯中心缩孔和后续热轧棒材探伤合格率可控,但铸坯初凝坯壳凝固前沿发生明显的C、S负偏析白亮带区及其柱状晶偏转现象。金相试样图像分析和相场法凝固模拟表明,铸坯中柱状晶具有逆流生长特征,其偏转角是一次枝晶尖端向旋流方向逆向生长的结果。自铸坯角部至宽、窄面中心,实测柱状晶区的一次枝晶偏转角约在−7°到27°之间。利用X射线能谱分析(EDS)进一步检测了钢中主要合金元素Si、Mn、Mo在铸坯不同晶区的分布,揭示了其铸态偏析特征与差异性。据此,探讨了这种铸态组织和成分偏析对后续热轧棒材和连杆成品组织的遗传性,以及对其胀断加工断口不合的影响,可为源头铸态质量的控制提供依据。

     

  • 图  1  铸坯横截面晶区特征及钻屑与金相试样切取示意图

    Figure  1.  Schematic of the as-cast bloom structure and sampling for chemistry and metallographic analysis

    图  2  大方坯低倍试样。(a)全断面低倍形貌;(b)柱状晶偏转;(c)皮下白亮带

    Figure  2.  Low-magnification specimens of blooms: (a) full-section morphology; (b) columnar crystal deflection; (c) subsurface white bright band

    图  3  铸坯断面自表及里不同晶区铸态枝晶形貌(1#, 3#, 6#, 12#)

    Figure  3.  Morphology of as-cast dendrites in different crystal regions from surface inward (1#, 3#, 6#, 12#)

    图  4  相场模拟横向流动下的枝晶逆流偏转及其溶质分布特征。(a)0.0 m·s−1;(b)0.04 m·s−1;(c)0.06 m·s−1

    Figure  4.  Phase-field simulation of dendrite countercurrent deflection and its solute distribution characteristics: (a) the velocity is 0.0 m·s−1; (b) the velocity is 0.04 m·s−1; (c) the velocity is 0.06 m·s−1

    图  5  铸坯横断面中柱状晶偏转生长形貌

    Figure  5.  Morphology of the columnar crystal deflective growth in bloom casting

    图  6  铸坯宽窄面柱状晶偏转角曲线。(a)窄面柱状晶偏转角分布;(b)宽面柱状晶偏转角分布

    Figure  6.  Deflection angle curve of the wide and narrow side columnar crystals: (a) narrow side of the bloom casting; (b) wide side of the bloom casting

    图  7  铸坯纵剖低倍及其不同区域碳偏析特征

    Figure  7.  As-cast macrostructure at the longitudinal section of the bloom casting and its cross-sectional carbon segregation

    图  8  不同晶区合金元素EDS分析值(1#激冷层、3#白亮带区域、12#等轴晶区)

    Figure  8.  EDS values of the solute elements in different crystal regions (1# quench layer, 3# white bright band area, 12# equiaxed crystal region)

    表  1  大方坯连铸机及生产工艺基本参数

    Table  1.   Bloom continuous casting machine and its basic production parameters

    Continuous casting machine parametersValue
    Number of castingsthree streams
    Cross section250 × 280 mm2
    Radius of continuous caster11 m
    Mould length780 mm
    Maximum metallurgical length23 m
    Nozzle typeImmersion straight-through
    Middle- electromagnetic stirring(M-EMS)500 A, 3 Hz
    First-electromagnetic stirring(F-EMS)530 A, 8 Hz
    Water flow rate at the mold2750 L·min−1
    Superheat11 K–24 K
    Casting speed0.75 m·min−1
    Second cooling specific water0.224 L·kg−1
    下载: 导出CSV

    表  2  铸坯断面钻屑点碳硫成分(质量分数)

    Table  2.   Carbon and sulfur concentration in the cross section of the bloom casting %

    NumberingCS NumberingCS
    1-10.7280.0657 2-10.6980.0565
    1-20.6900.0625 2-20.7630.0700
    1-30.6890.06242-30.7540.0705
    1-40.7190.06502-40.7630.0727
    1-50.7500.06782-50.7360.0692
    1-60.7510.06962-60.7000.0628
    1-70.7640.07452-70.6900.0669
    1-80.7290.06042-80.7060.0673
    0-00.8910.0824
    下载: 导出CSV

    表  3  铸坯不同位置合金元素含量差异度比值

    Table  3.   Distribution ratio of the solute elements in different crystal regions

    Element1#/3#12#/3#12#/1#
    Mn5.581.45
    Mo6.4311.431.78
    Si2.23.781.89
    下载: 导出CSV
  • [1] Wang Z H, Li S, Ge Y, et al. Research on microstructure and mechanical properties and fracture splitting properties of forged connecting rod of C70S6 non-quenched and tempered steel. Hot Working Technol, 2015, 44(19): 39

    王占花, 李慎, 葛宇, 等. C70S6非调质钢锻造连杆的组织力学性能和胀断性能研究. 热加工工艺, 2015, 44(19):39
    [2] Kang T, Liu X Y, Yang J H, et al. Analysis on cause of off-qualified continuous-rolling products of steel C70S6 BY by ultrasonic detection and process improvement. Special Steel, 2019, 40(2): 21 doi: 10.3969/j.issn.1003-8620.2019.02.006

    康湉, 刘向艳, 杨建华, 等. 胀断连杆用C70S6 BY钢连轧材探伤不合格原因分析和工艺改进. 特殊钢, 2019, 40(2):21 doi: 10.3969/j.issn.1003-8620.2019.02.006
    [3] Ji Y, Tang H Y, Lan P, et al. Effect of dendritic morphology and central segregation of billet castings on the microstructure and mechanical property of hot-rolled wire rods. Steel Res Int, 2017, 88(8): 1600426 doi: 10.1002/srin.201600426
    [4] Li B, Zhang Z H, Liu H S, et al. Characteristics and evolution of the spot segregations and banded defects in high strength corrosion resistant tube steel. Acta Metall Sin, 2019, 55(6): 762 doi: 10.11900/0412.1961.2018.00557

    李博, 张忠铧, 刘华松, 等. 高强耐蚀管钢点状偏析及带状缺陷的特征与演变. 金属学报, 2019, 55(6):762 doi: 10.11900/0412.1961.2018.00557
    [5] Raihle C M, Sivesson P, Tukiainen M, et al. Improving inner quality in continuously cast billets: comparison between mould electromagnetic stirring and thermal soft reduction. Ironmaking Steelmaking, 1994, 21(6): 487
    [6] Oh K S, Shin Y K, Chang Y W. The role of combination stirring and final stirring pool thickness on center defects of continuous cast high carbon steel blooms. Trans Iron Steel Soc, 1994, 21(4): 43
    [7] Spitzer K H, Dubke M, Schwerdtfeger K. Rotational electromagnetic stirring in continuous casting of round strands. Metall Trans B, 1986, 17(1): 119 doi: 10.1007/BF02670825
    [8] Yu Z, Lei Z S, Jia H H, et al. Numerical simulation of flow field using swirling flow nozzle in continuous casting billet mould // Proceedings of 4th International Conference on Continuous Casting of Steel in Developing Countries. Beijing, 2008: 554
    [9] Sun H B, Li L J, Wu X X, et al. Control of segregation and hardenability band width by optimizing M-EMS parameters for gear steel. Iron Steel, 2018, 53(8): 55

    孙海波, 李烈军, 吴学兴, 等. 基于M-EMS工艺优化的齿轮钢偏析及淬透性带宽控制. 钢铁, 2018, 53(8):55
    [10] Li S X, Wang P, Lan P, et al. Melt flow and heat transfer at the crater end of round billet continuous casting using final electromagnetic stirring. Chin J Eng, 2019, 41(6): 748

    李少翔, 王璞, 兰鹏, 等. 圆坯凝固末端电磁搅拌作用下的流动与传热行为. 工程科学学报, 2019, 41(6):748
    [11] Yokoya S, Takagi S, Iguchi M, et al. Swirling effect in immersion nozzle on flow and heat transport in billet continuous casting mold. ISIJ Int, 1998, 38(8): 827 doi: 10.2355/isijinternational.38.827
    [12] Li S X, Zhang X M, Li L, et al. Representation and effect of mushy zone coefficient on coupled flow and solidification simulation during continuous casting. Chin J Eng, 2019, 41(2): 199

    李少翔, 张晓萌, 李亮, 等. 连铸流动与凝固耦合模拟中糊状区系数的表征及影响. 工程科学学报, 2019, 41(2):199
    [13] Sun H B, Li L J, Wu X X, et al. Effect of subsurface negative segregation induced by M-EMS on componential homogeneity for bloom continuous casting. Metall Res Technol, 2018, 115(6): 603 doi: 10.1051/metal/2018031
    [14] Zhang W J, Luo S, Chen Y, et al. Numerical simulation of fluid flow, heat transfer, species transfer, and solidification in billet continuous casting mold with M-EMS. Metals, 2019, 9(1): 66 doi: 10.3390/met9010066
    [15] Bridge M R, Rogers G D. Structural effects and band segregate formation during the electromagnetic stirring of strand-cast steel. Metall Trans B, 1984, 15(3): 581 doi: 10.1007/BF02657390
    [16] Wu H J, Wei N, Bao Y P, et al. Effect of M-EMS on the solidification structure of a steel billet. Int J Miner Metall Mater, 2011, 18(2): 159 doi: 10.1007/s12613-011-0416-y
    [17] Wang X C, Wang S Q, Zhang L F, et al. Analysis on the deflection angle of columnar dendrites of continuous casting steel billets under the influence of mold electromagnetic stirring. Metall Mater Trans A, 2016, 47(11): 5496 doi: 10.1007/s11661-016-3695-0
    [18] Griffiths W D, McCartney D G. The effect of electromagnetic stirring during solidification on the structure of Al‒Si alloys. Mater Sci Eng A, 1996, 216(1-2): 47 doi: 10.1016/0921-5093(96)10392-0
    [19] Takahashi T, Ichikawa K, Kudou M, et al. The effect of fluid flow on the macrosegregation in steel ingot. Tetsu Hagané, 1975, 61: 2198

    高橋忠義, 市川洌, 工藤昌行, 等. 鋼塊の凝固偏析におよぼす溶湯流動の影響. 鉄と鋼, 1975, 61:2198
    [20] Geng D Q, Lei H, He J C, et al. Effect of electromagnetic swirling flow in slide-gate SEN on flow field in square billet continuous casting mold. Acta Metall Sin (Engl Lett), 2012, 25(5): 347
    [21] Xu Y, Xu X J, Li Z, et al. Dendrite growth characteristics and segregation control of bearing steel billet with rotational electromagnetic stirring. High Temp Mater Processes, 2007, 36(4): 339
    [22] Niu L, Qiu S T, Zhao J X, et al. Effects of continuous casting process parameters on carbon segregation degree of 38CrMoAl steel big round billet. J Iron Steel Res, 2018, 30(5): 359

    牛亮, 仇圣桃, 赵俊学, 等. 连铸工艺参数对38CrMoAl大圆坯碳偏析的影响. 钢铁研究学报, 2018, 30(5):359
    [23] Beckermann C, Diepers H J. Modeling melt convection in phase field simulations of solidification. J Comput Phys, 1999, 154(2): 468 doi: 10.1006/jcph.1999.6323
    [24] Esaka H, Suter F, Ogibayashi S. Influence of carbon content on the growth angle of steel dendrites in a flowing melt. ISIJ Int, 1996, 36(10): 1264 doi: 10.2355/isijinternational.36.1264
    [25] Li S X, Lan P, Zhang J Q. Numerical simulation of turbulence flow and solidification in a bloom continuous casting mould with electromagnetic stirring // TMS Annual Meeting & Exhibition. Springer, 2018: 223
    [26] Zhang D E, Harris S J, McCartney D G, et al. The effect of laser transformation notching on the controlled fracture of a high carbon (C70S6) steel. Mater Sci Eng A, 2008, 489(1-2): 273 doi: 10.1016/j.msea.2007.12.040
    [27] Zhang X Z, Zhou G F, Chen Q F, et al. Microstructure and mechanical properties of a new type of sulphur free cutting steel. Mater Mech Eng, 2010, 34(6): 61

    张贤忠, 周桂峰, 陈庆丰, 等. 一种新型含硫易切削钢的显微组织和力学性能. 机械工程材料, 2010, 34(6):61
    [28] Zhang X Z. Exploitation and Research of Microstructure and Properties of V−Ti−N Microalloyed Steel for Fracture Splitting Connecting-Rods [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2011

    张贤忠. 裂解连杆用V−Ti−N微合金钢的开发及组织与性能研究[学位论文]. 武汉: 华中科技大学, 2011
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  132
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-03
  • 网络出版日期:  2020-11-13

目录

    /

    返回文章
    返回