• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同打印角度SLM–Ti6Al4V组织结构及其在含氟离子溶液中的腐蚀行为

王尧 阎笑盈 满成 张宏伟 董超芳 王昕

王尧, 阎笑盈, 满成, 张宏伟, 董超芳, 王昕. 不同打印角度SLM–Ti6Al4V组织结构及其在含氟离子溶液中的腐蚀行为[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.09.29.001
引用本文: 王尧, 阎笑盈, 满成, 张宏伟, 董超芳, 王昕. 不同打印角度SLM–Ti6Al4V组织结构及其在含氟离子溶液中的腐蚀行为[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.09.29.001
WANG Yao, YAN Xiao-ying, MAN Cheng, ZHANG Hong-wei, DONG Chao-fang, WANG Xin. Microstructure and corrosion behavior of SLM–Ti6Al4V with different fabrication angles in F−-containing solutions[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.09.29.001
Citation: WANG Yao, YAN Xiao-ying, MAN Cheng, ZHANG Hong-wei, DONG Chao-fang, WANG Xin. Microstructure and corrosion behavior of SLM–Ti6Al4V with different fabrication angles in F-containing solutions[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.09.29.001

不同打印角度SLM–Ti6Al4V组织结构及其在含氟离子溶液中的腐蚀行为

doi: 10.13374/j.issn2095-9389.2020.09.29.001
基金项目: 国家自然科学基金资助项目(51901216);中国博士后科学基金资助项目(2019M652471,2020T130620)
详细信息
    通讯作者:

    E-mail:mancheng@ouc.edu.cn

  • 中图分类号: TG172.6

Microstructure and corrosion behavior of SLM–Ti6Al4V with different fabrication angles in F-containing solutions

More Information
  • 摘要: 采用金相显微镜、扫描电子显微镜、电化学实验和浸泡实验研究了打印角度30°、45°和60°的SLM-Ti6Al4V试样的组织结构及其在NaF溶液中的腐蚀行为。结果表明,三种试样的组织结构都是原β晶粒内部交叉分布针状α’相;打印角度45°试样中针状α’相尺寸与微观结构晶格畸变程度最小。电化学测试结构表明,三种试样在NaF溶液中的腐蚀行为特征都是随溶液浓度增加,由自发钝化逐渐转变为活性溶解,其临界氟离子浓度分别处于0.0005~0.00075、0.00075~0.001和0.0005~0.00075 mol·L−1。浸泡试验结果表明,当NaF浓度低于临界氟离子浓度的时候,试样表面基本保持完整,而高于临界值的时候试样表面发生活性溶解。此外,对比三种试样的耐腐蚀性能可以发现,打印角度为45°试样的耐腐蚀性能优于其他试样的性能。
  • 图  1  打印角度30°、45°和60°的SLM–Ti6Al4V试样示意图

    Figure  1.  Schematic of SLM–Ti6Al4V with fabrication angles of 30°, 45°, and 60°

    图  2  不同打印角度SLM–Ti6Al4V 试样的金相和扫描电镜结果。(a)金相,30°;(b)金相,45°;(c)金相,60°;(d)扫描电镜,30°;(e)扫描电镜,45°;(f)扫描电镜,60°

    Figure  2.  Metalloscopy, SEM results of SLM–Ti6Al4V samples: (a) metalloscopy, 30°; (b) metalloscopy, 45°; (c) metalloscopy, 60°; (d) SEM, 30°; (e) SEM, 45°; (f) SEM, 60°

    图  3  打印角度30°、45°和60°的SLM–Ti6Al4V试样的X射线衍射图

    Figure  3.  XRD patterns of SLM–Ti6Al4V with different fabrication angles

    图  4  不同打印角度SLM–Ti6Al4V 试样的OCP结果。(a)30°;(b)45°;(c)60°;(d)OCP随NaF浓度的变化

    Figure  4.  OCP results of SLM–Ti6Al4V with different fabrication angles: (a) 30°; (b) 45°; (c) 60°; (d) distribution of OCP with NaF concentrations

    图  5  不同打印角度SLM–Ti6Al4V 试样的极化曲线结果。(a)30°;(b)45°;(c)60°;(d)钝化电流密度随NaF浓度的变化

    Figure  5.  OCP results of SLM–Ti6Al4V with different fabrication angles: (a) 30°; (b) 45°; (c) 60°; (d) distribution of passive current density with NaF concentrations

    图  6  不同打印角度的SLM–Ti6Al4V 试样的电化学交流阻抗图((a)30°,(b)45°,(c)60°),极化电阻图(d),以及等效电路图(e, f)

    Figure  6.  EIS results of SLM–Ti6Al4V with different fabrication angles ((a) 30°, (b) 45°, and (c) 60°); polarization resistance (d); and the equivalent electrical circuits (e, f)

    图  7  不同打印角度SLM–Ti6Al4V试样在不同NaF浓度溶液中浸泡72 h后的腐蚀形貌

    Figure  7.  Morphologies of SLM–Ti6Al4V with different fabrication angles after immersed in different concentrations of NaF for 72 h

  • [1] 李俊峰, 魏正英, 卢秉恒. 钛及钛合金激光选区熔化技术的研究进展. 激光与光电子学进展, 2018, 55(1):21

    Li J F, Wei Z Y, Lu B H. Research progress on technology of selective laser melting of titanium and titanium alloys. Laser Optoelectron Prog, 2018, 55(1): 21
    [2] (葛亚楠, 武美萍, 冒浴沂, 等. 激光选区熔化扫描策略对钛合金成形精度的影响. 激光与光电子学进展, 2018, 55(9):262

    Ge Y N, Wu M P, Mao Y Y, et al. Effect of scanning strategy on forming precision of titanium alloy by selective laser melting. Laser Optoelectron Prog, 2018, 55(9): 262
    [3] 张慧. 选区激光熔化TC4 合金的凝固组织演化规律研究[学位论文]. 哈尔滨: 哈尔滨工业大学, 2017

    Zhang H. Research on the Solidification Microstructure Evolution of TC4 Alloy Fabricated by Selective Laser Melting [Dissertation]. Harbin: Harbin Institute of Technology, 2017
    [4] Yadroitsev I, Smurov I. Selective laser melting technology: From the single laser melted track stability to 3D parts of complex shape. Phys Procedia, 2010, 5: 551 doi: 10.1016/j.phpro.2010.08.083
    [5] Zhang L C, Attar H. Selective laser melting of titanium alloys and titanium matrix composites for biomedical applications: a review. Adv Eng Mater, 2016, 18(4): 463 doi: 10.1002/adem.201500419
    [6] Shi Q M, Gu D D, Xia M J, et al. Effects of laser processing parameters on thermal behavior and melting/solidification mechanism during selective laser melting of TiC/Inconel 718 composites. Opt Laser Technol, 2016, 84: 9 doi: 10.1016/j.optlastec.2016.04.009
    [7] Yadroitsev I, Krakhmalev P, Yadroitsava I. Selective laser melting of Ti6Al4V alloy for biomedical applications: temperature monitoring and microstructural evolution. J Alloys Compd, 2014, 583: 404 doi: 10.1016/j.jallcom.2013.08.183
    [8] 谢印开. 激光选区熔化Ti–6Al–4V 温度场与流场的数值模拟[学位论文]. 北京: 北京工业大学, 2018

    Xie Y K. Numerical Investigation on Temperature Field and Flow Field During Selective Laser Melting of Ti-6Al-4V [Dissertation]. Beijing: Beijing University of Technology, 2018
    [9] Dai N W, Zhang L C, Zhang J X, et al. Distinction in corrosion resistance of selective laser melted Ti-6Al-4V alloy on different planes. Corros Sci, 2016, 111: 703 doi: 10.1016/j.corsci.2016.06.009
    [10] Dai N W, Zhang L C, Zhang J X, et al. Corrosion behavior of selective laser melted Ti-6Al-4V alloy in NaCl solution. Corros Sci, 2016, 102: 484 doi: 10.1016/j.corsci.2015.10.041
    [11] Chen L Y, Huang J C, Lin C H, et al. Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting. Mater Sci Eng A, 2017, 682: 389 doi: 10.1016/j.msea.2016.11.061
    [12] Simonelli M. Microstructure Evolution and Mechanical Properties of Selective Laser Melted Ti-6Al-4V [Dissertation]. Leicestershire: Loughborough University, 2014
    [13] Wang Z B, Hu H X, Zheng Y G, et al. Comparison of the corrosion behavior of pure titanium and its alloys in fluoride-containing sulfuric acid. Corros Sci, 2016, 103: 50 doi: 10.1016/j.corsci.2015.11.003
    [14] 曹楚南. 腐蚀电化学原理. 3版. 北京: 化学工业出版社, 2008

    Cao C N. Principles of Electrochemistry of Corrosion. 3rd Ed. Beijing: Chemical Industry Press, 2008
    [15] Mansfeld F. Tafel slopes and corrosion rates obtained in the pre-Tafel region of polarization curves. Corros Sci, 2005, 47(12): 3178 doi: 10.1016/j.corsci.2005.04.012
    [16] Man C, Dong C F, Liu T T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid. Appl Surf Sci, 2019, 467-468: 193 doi: 10.1016/j.apsusc.2018.10.150
    [17] Wang Z B, Hu H X, Liu C B, et al. The effect of fluoride ions on the corrosion behavior of pure titanium in 0.05 M sulfuric acid. Electrochim Acta, 2014, 135: 526
    [18] Arrabal R, Matykina E, Viejo F, et al. Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings. Corros Sci, 2008, 50(6): 1744 doi: 10.1016/j.corsci.2008.03.002
    [19] Wang B L, Zheng Y F, Zhao L C. Effects of Hf content and immersion time on electrochemical behavior of biomedical Ti-22Nb-xHf alloys in 0.9% NaCl solution. Mater Corros, 2009, 60(5): 330
    [20] Cui Z Y, Wang L W, Zhong M Y, et al. Electrochemical behavior and surface characteristics of pure titanium during corrosion in simulated desulfurized flue gas condensates. J Electrochem Soc, 2018, 165(9): C542 doi: 10.1149/2.1321809jes
    [21] Zhang H W, Man C, Wang L W, et al. Different corrosion behaviors between α and β phases of Ti6Al4V in fluoride-containing solutions: influence of alloying element Al. Corros Sci, 2020, 169: 108605 doi: 10.1016/j.corsci.2020.108605
    [22] Abbas G, Liu Z, Skeldon P. Corrosion behaviour of laser-melted magnesium alloys. Appl Surf Sci, 2005, 247(1-4): 347 doi: 10.1016/j.apsusc.2005.01.169
    [23] Stancheva M, Bojinov M. Influence of fluoride content on the barrier layer formation and titanium dissolution in ethylene glycol–water electrolytes. Electrochim Acta, 2012, 78: 65 doi: 10.1016/j.electacta.2012.05.093
    [24] Nakagawa M, Matsuya S, Shiraishi T, et al. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J Dent Res, 1999, 78(9): 1568 doi: 10.1177/00220345990780091201
    [25] Guo P F, Lin X, Li J Q, et al. Electrochemical behavior of Inconel 718 fabricated by laser solid forming on different sections. Corros Sci, 2018, 132: 79 doi: 10.1016/j.corsci.2017.12.021
  • 加载中
计量
  • 文章访问数:  291
  • HTML全文浏览量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-29
  • 网络出版日期:  2020-12-04

目录

    /

    返回文章
    返回