• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烧结烟气中Zn对V2O5−WO3/TiO2催化剂脱除NOx和二噁英性能的影响

丁龙 钱立新 杨涛 张洪亮 余正伟 张晓霞 龙红明

丁龙, 钱立新, 杨涛, 张洪亮, 余正伟, 张晓霞, 龙红明. 烧结烟气中Zn对V2O5−WO3/TiO2催化剂脱除NOx和二噁英性能的影响[J]. 工程科学学报, 2021, 43(8): 1125-1135. doi: 10.13374/j.issn2095-9389.2020.10.08.001
引用本文: 丁龙, 钱立新, 杨涛, 张洪亮, 余正伟, 张晓霞, 龙红明. 烧结烟气中Zn对V2O5−WO3/TiO2催化剂脱除NOx和二噁英性能的影响[J]. 工程科学学报, 2021, 43(8): 1125-1135. doi: 10.13374/j.issn2095-9389.2020.10.08.001
DING Long, QIAN Li-xin, YANG Tao, ZHANG Hong-liang, YU Zheng-wei, ZHANG Xiao-xia, LONG Hong-ming. Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1125-1135. doi: 10.13374/j.issn2095-9389.2020.10.08.001
Citation: DING Long, QIAN Li-xin, YANG Tao, ZHANG Hong-liang, YU Zheng-wei, ZHANG Xiao-xia, LONG Hong-ming. Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1125-1135. doi: 10.13374/j.issn2095-9389.2020.10.08.001

烧结烟气中Zn对V2O5−WO3/TiO2催化剂脱除NOx和二噁英性能的影响

doi: 10.13374/j.issn2095-9389.2020.10.08.001
基金项目: 国家自然科学基金资助面上项目(51674002);国家自然科学基金资助青年项目(51704009)
详细信息
    通讯作者:

    E-mail:yaflhm@126.com

  • 中图分类号: O643.3

Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst

More Information
  • 摘要: V2O5−WO3/TiO2(VWTi)催化剂可以同时脱除铁矿烧结烟气中的NOx和二噁英,但复杂的烟气成分会导致催化剂失活。本文采用浸渍法对VWTi 催化剂进行ZnCl2、ZnO和ZnSO4中毒实验。模拟烧结烟气条件,研究了在VWTi催化剂表面负载不同形态Zn对其同时脱除NOx和二噁英(以氯苯作为模拟物)性能的影响,分析了中毒前后催化剂表面活性物质的理化性质,并对中毒催化剂开展了再生实验。结果表明:不同Zn物种对VWTi催化剂同时脱除NOx和氯苯(CB)均具有失活作用。Zn物种会引起催化剂表面颗粒轻微团聚,表面酸性位点数量减少,表面V的还原性减弱,表面化学吸附氧比例,以及V5+和V4+的物质的量比值降低。再生实验结果表明:酸洗可以在一定程度上恢复中毒催化剂的催化活性,但水洗不能恢复中毒催化剂的活性。研究发现Zn盐中毒作用机理为:Zn2+与催化剂表面酸性位点V=O和V−OH反应形成V−O−Zn,对NH3与CB的吸附产生不利影响,造成催化剂中毒失活,ZnSO4中的${\rm{SO}}_4^{2-} $可以为NH3和CB的吸附转化提供新的酸性位点,减轻中毒效果,ZnCl2中的Cl会在反应后产生副产物HCl,造成催化剂表面更多活性位点中毒,加深中毒效果。

     

  • 图  1  催化剂活性测试设备图

    Figure  1.  Schematic of the equipment for testing catalytic activity

    图  2  新鲜催化剂与Zn2+中毒催化剂的脱硝活性(a)和CB降解率(b)

    Figure  2.  Denitrification (a) and chlorobenzene degradation (b) of activity of fresh and Zn2+-poisoned catalysts

    图  3  新鲜催化剂和Zn2+中毒催化剂XRD图谱

    Figure  3.  X-ray diffraction spectra of fresh and Zn2+-poisoned catalysts

    图  4  新鲜催化剂和Zn2+中毒催化剂N2吸附曲线

    Figure  4.  N2 adsorption curves of fresh and Zn2+-poisoned catalysts

    图  5  (a)Fresh catalyst,(b)ZC2,(c)ZO2 and (d)ZS2 的扫描电镜图谱

    Figure  5.  Scanning electron microscopy images of (a) fresh (b) ZC2, (c) ZO2, and (d) ZS2 catalysts

    图  6  新鲜催化剂和Zn2+中毒催化剂NH3−TPD图谱

    Figure  6.  NH3−TPD profiles of fresh and Zn2+-poisoned catalysts

    图  7  新鲜催化剂和Zn2+中毒催化剂H2−TPR图谱

    Figure  7.  H2−TPR profiles of fresh and Zn2+−poisoned catalysts

    图  8  不同催化剂O1s XPS图谱

    Figure  8.  X-ray photoelectron spectroscopy (XPS) spectra of O1s in different catalysts

    图  9  不同催化剂V2p3/2 的XPS图谱

    Figure  9.  XPS spectra of V2p3/2 in different catalysts

    图  10  新鲜催化剂和Zn2+中毒催化剂拉曼光谱图

    Figure  10.  Raman spectra of fresh and Zn2+-poisoned catalysts

    图  11  再生催化剂脱硝(a)和CB降解活性(b)

    Figure  11.  Denitrification activity (a) and CB degradation activity (b) of the regenerated catalysts

    图  12  WVTi催化剂 ZnO、ZnCl2 和 ZnSO4中毒机理图

    Figure  12.  Schematic of the mechanism of poisoning of the WVTi catalyst by ZnO, ZnCl2, and ZnSO4

    表  1  新鲜催化剂和Zn2+中毒催化剂的BET表面积、孔容积和孔径

    Table  1.   Brunauer–Emmett–Teller surface area, pore volume, and pore size of fresh and Zn2+-poisoned catalysts

    SamplesSurface area / (m2·g−1)Pore volume / (cm3·g−1)Pore size / nm
    Fresh38.250.18519.38
    ZC237.350.17919.19
    ZO237.440.18119.39
    ZS233.260.17220.45
    下载: 导出CSV

    表  2  新鲜催化剂和Zn2+中毒催化剂V XPS结果

    Table  2.   X-ray photoelectron spectroscopy results of V in fresh and Zn2+-poisoned catalysts

    V2p3/2
    FreshZC2ZO2ZS2
    Ebv/eVω/%Ebv/eVω/%Ebv/eVω/%Ebv/eVω/%
    V3+515.36.22515.48.25515.27.14515.45.88
    V4+516.531.56516.540.36516.538.09516.435.29
    V5+517.462.21517.251.37517.354.76517.158.82
    V5+/V4+1.971.271.431.67
    下载: 导出CSV

    表  3  中毒催化剂再生前后XRF结果

    Table  3.   X-ray fluorescence results of the poisoned catalysts, before and after regeneration %

    Samples
    Mass content of different elements/%
    TiSiAlWSVCaZn
    Fresh42.436.112.002.110.841.081.37
    ZC241.85.661.882.050.9691.071.351.03
    ZC2−W43.415.891.912.140.3141.081.200.78
    ZC2−A44.875.951.752.170.320.751.180.06
    ZO242.445.801.912.060.7561.081.351.27
    ZO2−W43.625.861.942.140.3051.081.220.98
    ZO2−A44.685.911.732.220.310.771.200.05
    下载: 导出CSV
  • [1] Kong M, Liu Q C, Zhou J, et al. Effect of different potassium species on the deactivation of V2O5−WO3/TiO2 SCR catalyst: Comparison of K2SO4, KCl and K2O. Chem Eng J, 2018, 348: 637 doi: 10.1016/j.cej.2018.05.045
    [2] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1

    邢奕, 张文伯, 苏伟, 等. 中国钢铁行业超低排放之路. 工程科学学报, 2021, 43(1):1
    [3] Yan B J, Xing Y, Lu P, et al. A critical review on the research progress of multi-pollutant collaborative control technologies of sintering flue gas in the iron and steel industry. Chin J Eng, 2018, 40(7): 767

    闫伯骏, 邢奕, 路培, 等. 钢铁行业烧结烟气多污染物协同净化技术研究进展. 工程科学学报, 2018, 40(7):767
    [4] Yu Y K, He C, Chen J S, et al. Deactivation mechanism of de-NOx catalyst (V2O5−WO3/TiO2) used in coal fired power plant. J Fuel Chem Technol, 2012, 40(11): 1359 doi: 10.1016/S1872-5813(13)60003-1
    [5] Wu S L, Zhang Y Z, Su B, et al. Analysis of main factors affecting NOx emissions in sintering process. Chin J Eng, 2017, 39(5): 693

    吴胜利, 张永忠, 苏博, 等. 影响烧结工艺过程NOx排放质量浓度的主要因素解析. 工程科学学报, 2017, 39(5):693
    [6] Wang J, Shen B X, Liu T, et al. Deactivation and regeneration of SCR catalyst based on V2O5−TiO2. Environ Sci Technol, 2010, 33(9): 97

    王静, 沈伯雄, 刘亭, 等. 钒钛基SCR催化剂中毒及再生研究进展. 环境科学与技术, 2010, 33(9):97
    [7] Wang C, Li C M, Li Y J, et al. Destructive influence of cement dust on the structure and DeNOx performance of V-based SCR catalyst. Ind Eng Chem Res, 2019, 58(43): 19847 doi: 10.1021/acs.iecr.9b04268
    [8] Liu J D, Huang Z G, Li Z, et al. Ce modification on Mn/TiO2/cordierite monolithic catalyst for low-temperature NOx reduction. Chem J Chin Univ, 2014, 35(3): 589

    刘建东, 黄张根, 李哲, 等. Ce对Mn/TiO2/堇青石整体低温脱硝选择性催化还原催化剂的改性. 高等学校化学学报, 2014, 35(3):589
    [9] Chen L, Li J H, Ge M F. The poisoning effect of alkali metals doping over nano V2O5−WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3. Chem Eng J, 2011, 170(2-3): 531 doi: 10.1016/j.cej.2010.11.020
    [10] Li X, Li J H, Peng Y, et al. Regeneration of commercial SCR catalysts: probing the existing forms of arsenic oxide. Environ Sci Technol, 2015, 49(16): 9971 doi: 10.1021/acs.est.5b02257
    [11] Dahlin S, Nilsson M, Bäckström D, et al. Multivariate analysis of the effect of biodiesel-derived contaminants on V2O5−WO3/TiO2 SCR catalysts. Appl Catal B Environ, 2016, 183: 377 doi: 10.1016/j.apcatb.2015.10.045
    [12] Guo R T, Lu C Z, Pan W G, et al. A comparative study of the poisoning effect of Zn and Pb on Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3. Catal Commun, 2015, 59: 136 doi: 10.1016/j.catcom.2014.10.006
    [13] Peng Y, Wang D, Li B et al. Impacts of Pb and SO2 poisoning on CeO2−WO3/TiO2− SiO2 SCR catalyst. Environ Sci Technol, 2017, 51(20): 11943 doi: 10.1021/acs.est.7b03309
    [14] Yan L J, Wang F L, Wang P L, et al. Unraveling the unexpected offset effects of Cd and SO2 deactivation over CeO2−WO3/TiO2 catalysts for NOx reduction. Environ Sci Technol, 2020, 54(12): 7697 doi: 10.1021/acs.est.0c01749
    [15] Kong M, Liu Q C, Zhu B H, et al. Synergy of KCl and Hgel on selective catalytic reduction of NO with NH3 over V2O5− WO3/TiO2 catalysts. Chem Eng J, 2015, 264: 815 doi: 10.1016/j.cej.2014.12.038
    [16] Qian L X, Chun T J, Long H M, et al. Emission reduction research and development of PCDD/Fs in the iron ore sintering. Process Saf Environ Prot, 2018, 117: 82 doi: 10.1016/j.psep.2018.04.014
    [17] Chun T J, Zhu D Q. New process of pellets-metallized sintering process (PMSP) to treat zinc-bearing dust from iron and steel company. Metall Mater Trans B, 2015, 46(1): 1 doi: 10.1007/s11663-014-0243-4
    [18] Ji S S, Li X D, Yu M F, et al. Oxidation of PCDD/Fs over V2O5−TiO2-based catalyst. J Zhejiang Univ Eng Sci, 2014, 48(10): 1746

    纪莎莎, 李晓东, 俞明锋, 等. V2O5−WO3/TiO2 催化剂降解气相二恶英的研究. 浙江大学学报(工学版), 2014, 48(10):1746
    [19] Yang C C, Chang S H, Hong B Z, et al. Innovative PCDD/F-containing gas stream generating system applied in catalytic decomposition of gaseous dioxins over V2O5−WO3/TiO2-based catalysts. Chemosphere, 2008, 73(6): 890 doi: 10.1016/j.chemosphere.2008.07.027
    [20] Weng X L, Xue Y H, Chen J K, et al. Elimination of chloroaromatic congeners on a commercial V2O5−WO3/TiO2 catalyst: The effect of heavy metal Pb. J Hazard Mater, 2020, 387: 121705 doi: 10.1016/j.jhazmat.2019.121705
    [21] Sprenger D, Bach H, Meisel W, et al. XPS study of leached glass surfaces. J Non-Cryst Solids, 1990, 126(1− 2): 111
    [22] Topsoe N Y, Topsoe H, Dumesic J A. Vanadia/titania catalysts for selective catalytic reduction (SCR) of nitric-oxide by ammonia: I. combined temperature-programmed in-situ FTIR and on-line mass-spectroscopy studies. J Catal, 1995, 151(1): 226 doi: 10.1006/jcat.1995.1024
    [23] Alemany L J, Lietti L, Ferlazzo N, et al. Reactivity and physicochemical characterization of V2O5−WO3/TiO2 de-NOx catalysts. J Catal, 1995, 155(1): 117 doi: 10.1006/jcat.1995.1193
    [24] Ramis G, Yi L, Busca G. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3. An FT-IR study. Catal Today, 1996, 28(4): 373 doi: 10.1016/S0920-5861(96)00050-8
    [25] Topsoe N Y. Mechanism of the selective catalytic reduction of nitric oxide by ammonia elucidated by in situ on-line Fourier transform infrared spectroscopy. Science, 1994, 265(5176): 1217 doi: 10.1126/science.265.5176.1217
    [26] Wang J, Wang X, Liu X L, et al. Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts: The effects of chlorine substituents. Catal Today, 2015, 241: 92 doi: 10.1016/j.cattod.2014.04.002
    [27] Miao J F, Yi X F, Su Q F, et al. Poisoning effects of phosphorus, potassium and lead on V2O5−WO3/TiO2 catalysts for selective catalytic reduction with NH3. Catalysts, 2020, 10(3): 345 doi: 10.3390/catal10030345
    [28] Gao F Y, Tang X L, Yi H H, et al. The poisoning and regeneration effect of alkali metals deposed over commercial V2O5−WO3/TiO2 catalysts on SCR of NO by NH3. Chin Sci Bull, 2014, 59(31): 3966 doi: 10.1007/s11434-014-0496-y
    [29] Xu L W, Wang C Z, Chang H Z, et al. New insight into SO2 poisoning and regeneration of CeO2–WO3/TiO2 and V2O5–WO3/TiO2 catalysts for low-temperature NH3–SCR. Environ Sci Technol, 2018, 52(12): 7064 doi: 10.1021/acs.est.8b01990
    [30] Madia G, Elsener M, Koebel M, et al. Thermal stability of vanadia-tungsta-titania catalysts in the SCR process. Appl Catal B Environ, 2002, 39(2): 181 doi: 10.1016/S0926-3373(02)00099-1
    [31] Bond G C, Tahir S F. Vanadium oxide monolayer catalysts Preparation, characterization and catalytic activity. App Catal, 1991, 71(1): 1 doi: 10.1016/0166-9834(91)85002-D
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  158
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-08
  • 网络出版日期:  2020-11-26
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回