• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

RH强制脱碳与自然脱碳工艺生产IF钢精炼效果分析

袁保辉 刘建华 周海龙 黄基红 张硕 申志鹏

袁保辉, 刘建华, 周海龙, 黄基红, 张硕, 申志鹏. RH强制脱碳与自然脱碳工艺生产IF钢精炼效果分析[J]. 工程科学学报, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002
引用本文: 袁保辉, 刘建华, 周海龙, 黄基红, 张硕, 申志鹏. RH强制脱碳与自然脱碳工艺生产IF钢精炼效果分析[J]. 工程科学学报, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002
YUAN Bao-hui, LIU Jian-hua, ZHOU Hai-long, HUANG Ji-hong, ZHANG Shuo, SHEN Zhi-peng. Refining effect of IF steel produced by RH forced and natural decarburization process[J]. Chinese Journal of Engineering, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002
Citation: YUAN Bao-hui, LIU Jian-hua, ZHOU Hai-long, HUANG Ji-hong, ZHANG Shuo, SHEN Zhi-peng. Refining effect of IF steel produced by RH forced and natural decarburization process[J]. Chinese Journal of Engineering, 2021, 43(8): 1107-1115. doi: 10.13374/j.issn2095-9389.2020.10.10.002

RH强制脱碳与自然脱碳工艺生产IF钢精炼效果分析

doi: 10.13374/j.issn2095-9389.2020.10.10.002
基金项目: 国家自然科学基金资助项目(51874028)
详细信息
    通讯作者:

    E-mail:liujianhua@metall.ustb.edu.cn

  • 中图分类号: TF769.9

Refining effect of IF steel produced by RH forced and natural decarburization process

More Information
  • 摘要: 西昌钢钒厂由于转炉热量不足而以转炉—LF精炼—RH精炼—连铸工艺生产IF钢,为探究RH强制脱碳与自然脱碳工艺生产IF钢精炼效果,采用生产数据统计、氧氮分析、夹杂物自动扫描、扫描电镜和能谱分析等手段,对不同脱碳工艺对顶渣氧化性以及钢的洁净度影响进行了详细研究。结果表明:(1)与自然脱碳工艺炉次相比,采用强制脱碳工艺的炉次在转炉结束与RH进站钢中的平均[O]含量更低;(2)两种工艺脱碳结束钢中的[O]含量基本在同一水平;(3)强制脱碳工艺的炉次在RH结束时渣中平均T.Fe的质量分数降低了1.3%。在能满足RH脱碳效果的前提下,尽量提高转炉终点钢液碳含量、降低钢液氧含量,后续在RH精炼时采用强制吹氧脱碳工艺,适当增大吹氧量来弥补钢中氧,可显著降低IF钢顶渣氧化性。自然脱碳工艺与强制脱碳工艺控制热轧板T.O含量均比较理想;与自然脱碳工艺相比,强制脱碳工艺可有效降低IF钢[N]含量,这与强制脱碳工艺真空室内碳氧反应更剧烈所导致的CO气泡更多和气液反应面积更大有关。脱碳工艺对IF钢热轧板中夹杂物类型、尺寸及数量没有明显影响,夹杂物主要由Al2O3夹杂、Al2O3–TiOx夹杂与其他类夹杂物组成,以夹杂物的等效圆直径表示夹杂物尺寸,以上三类夹杂物平均尺寸分别为4.5、4.4和6.5 μm,且钢中尺寸在8 μm以下的夹杂物数量占比高于75%。在RH精炼过程中,尽量降低RH脱碳结束钢中[O]含量,有利于提高钢液洁净度。

     

  • 图  1  试样加工示意图

    Figure  1.  Sampling scheme for the hot–rolled sheet

    图  2  不同RH脱碳工艺钢中[O]含量和RH结束渣中T.Fe含量分布

    Figure  2.  Distribution of [O] content in molten steel and T.Fe content in the ladle slag after the RH treatment in different RH decarburization processes

    图  3  不同吹氧量时各工序钢中[O]和RH结束渣中T.Fe变化

    Figure  3.  Changes of [O] content in molten steel of the different processes and T.Fe content in the ladle slag after the RH treatment for different oxygen blowing conditions

    图  4  不同脱碳工艺炉次钢中T.O和[N]含量变化。(a)自然脱碳;(b)强制脱碳

    Figure  4.  Total oxygen and nitrogen changes in different decarburization process heats: (a) natural decarburization process; (b) forced decarburization process

    图  5  自然脱碳工艺炉次1钢中夹杂物的典型形貌。(a)Al2O3夹杂物;(b)Al2O3−TiOx夹杂物;(c)CaO−Al2O3−TiOx、MgO−Al2O3、MgO−Al2O3−TiOx夹杂物

    Figure  5.  Typical morphologies of inclusions in the natural decarburization process of Heat 1:(a) Al2O3 inclusions; (b) Al2O3–TiOx inclusions; (c) CaO–Al2O3–TiOx, MgO–Al2O3–TiOx, and MgO–Al2O3 inclusions

    图  6  强制脱碳工艺炉次4钢中夹杂物的典型形貌。(a)Al2O3夹杂物;(b)Al2O3−TiOx夹杂物;(c)CaO−Al2O3−TiOx、CaO−Al2O3、CaO−Al2O3−TiOx夹杂物

    Figure  6.  Typical morphologies of inclusions in the forced decarburization process of Heat 4: (a) Al2O3 inclusions; (b) Al2O3–TiOx inclusions; (c) CaO–Al2O3–TiOx, CaO–Al2O3, and CaO–Al2O3–TiOx inclusions

    图  7  夹杂物的能谱面扫图。(a)Al2O3夹杂物;(b)Al2O3–TiOx夹杂物;(c)MgO–Al2O3–TiOx夹杂物;(d)CaO–Al2O3–TiOx夹杂物

    Figure  7.  Elemental mapping of inclusions: (a) Al2O3; (b) Al2O3–TiOx; (c) MgO–Al2O3–TiOx; (d) CaO–Al2O3–TiOx

    图  8  不同脱碳工艺各类夹杂物尺寸分布箱型图

    Figure  8.  Size changes and distribution of inclusions in different decarburization processes

    图  9  不同脱碳工艺炉次各类夹杂物数量密度变化。(a)自然脱碳;(b)强制脱碳

    Figure  9.  Number density changes of inclusions in different decarburization process heats: (a) natural decarburization process; (b) forced decarburization process

    图  10  RH脱碳结束钢中[O]与钢中夹杂物的数量关系

    Figure  10.  Relationship between the number of inclusions and [O] content in molten steel after RH decarburization

    表  1  试验炉次RH过程工艺参数

    Table  1.   Process parameters of experimental heats during the RH treatment

    Decarburization processHeatsOxygen
    blowing/
    m3
    [C] content in
    steel after
    decarburization/
    10−6
    [O] content in
    steel after
    decarburization/
    10−6
    Natural decarburization1 018277
    2 011284
    3 015290
    Forced decarburization4 1513285
    5 1010262
    6 6010306
    下载: 导出CSV

    表  2  自然脱碳与强制脱碳工艺脱碳效果比较

    Table  2.   Comparison of the decarburization effects between the natural and forced decarburization processes

    Decarburization process[C]ave content in steel
    after BOF/10−6
    [C]ave content in steel
    before RH/10−6
    [C]ave content in steel
    after decarburization/10−6
    RH decarburization time/minRH treatment time/min
    Natural decarburization42030511.12032
    Forced decarburization49034411.82133
    Note: The subscript ave represents the average content in this work.
    下载: 导出CSV
  • [1] Wang X H. Non-metallic inclusion control technology for high quality cold rolled steel sheets. Iron Steel, 2013, 48(9): 1

    王新华. 高品质冷轧薄板钢中非金属夹杂物控制技术. 钢铁, 2013, 48(9):1
    [2] Sun Q, Lin Y, Li W D. Decarburization treatment and inclusion control during RH refining. J Univ Sci Technol Beijing, 2011(S1): 142

    孙群, 林洋, 李伟东. RH精炼脱碳与夹杂物控制. 北京科技大学学报, 2011(S1):142
    [3] Yue F, Cui H, Li P H, et al. Study on the optimum process of refining ULC steel by RH degasser. J Univ Sci Technol Beijing, 2009(S1): 53

    岳峰, 崔衡, 李朋欢, 等. RH冶炼超低碳钢的最优工艺研究. 北京科技大学学报, 2009(S1):53
    [4] Ma H X, Wang X H, Huang F X, et al. Effect of deoxidation technology on cleanliness of low carbon aluminum killed steel. Iron Steel, 2016, 51(1): 19

    马焕珣, 王新华, 黄福祥, 等. 脱氧工艺对低碳铝镇静钢洁净度的影响. 钢铁, 2016, 51(1):19
    [5] Yuan P, Li H B, Luo Y Z, et al. Influence of ladle slag oxidability on the cleanliness of ultra low carbon steel. Chin J Eng, 2016, 38(12): 1702

    苑鹏, 李海波, 罗衍昭, 等. 超低碳钢顶渣氧化性对钢液洁净度的影响. 工程科学学报, 2016, 38(12):1702
    [6] Shu H F, Liu L, Liu X H. Influence of slag denaturalization on inclusions in IF steel. Steelmaking, 2016, 32(3): 55

    舒宏富, 刘浏, 刘学华. 钢包顶渣改质对IF钢夹杂物的影响. 炼钢, 2016, 32(3):55
    [7] Peng Z G, Qi J H, Yang C W. Influence of slag denaturalization on inclusions in IF steel. Chin J Eng, 2018(S1): 174

    彭著刚, 齐江华, 杨成威. 顶渣改质工艺对IF钢夹杂物的影响. 工程科学学报, 2018(S1):174
    [8] Wang M, Bao Y P, Cui H, et al. Effect of RH pure circulation on the cleanness of titanium stabilized interstitial-free(Ti-IF) steel. J Univ Sci Technol Beijing, 2011, 33(12): 1448

    王敏, 包燕平, 崔衡, 等. RH纯循环对Ti-IF钢洁净度的影响. 北京科技大学学报, 2011, 33(12):1448
    [9] Cui H, Chen B, Wang M, et al. Cleanliness control of IF steel during the RH refining process. J Univ Sci Technol Beijing, 2011(S1): 147

    崔衡, 陈斌, 王敏, 等. RH精炼过程中IF钢洁净度控制. 北京科技大学学报, 2011(S1):147
    [10] Li Y H, Bao Y P, Shen X W, et al. Inclusions control study of DC06 steel in 300 t ladle. Steelmaking, 2014, 30(2): 38

    李怡宏, 包燕平, 申小维, 等. 300 t钢包内DC06钢的夹杂物控制研究. 炼钢, 2014, 30(2):38
    [11] Cui H, Tian E H, Chen B, et al. Cleanliness study of IF steel by holding in ladles after RH vacuum process. Chin J Eng, 2014(S1): 32

    崔衡, 田恩华, 陈斌, 等. RH真空精炼后IF钢镇静工艺的洁净度研究. 工程科学学报, 2014(S1):32
    [12] Cui A M, Wang J W, Liu B S, et al. The comparative study on the natural decarburization effect by RH and the forced decarburization effect by RH-TOP. Shou Gang Sci Technol, 2010(4): 24

    崔爱民, 王建伟, 刘柏松, 等. RH精炼自然脱碳和TOP强制脱碳效果的对比研究. 首钢科技, 2010(4):24
    [13] Li P H, Bao Y P, Yue F, et al. Mechanism of carbon and oxygen reaction in RH decarburization of ultra low oxygen steel. J Univ Sci Technol Beijing, 2011, 33(7): 823

    李朋欢, 包燕平, 岳峰, 等. RH脱碳过程中极低氧钢水的碳氧反应机理. 北京科技大学学报, 2011, 33(7):823
    [14] Liu B S, Li B H, Zhu G S, et al. Experimental investigation on conventional RH and RH-TOP refining process for IF steel production. Iron Steel, 2010, 45(8): 33

    刘柏松, 李本海, 朱国森, 等. 常规RH和RH-TOP工艺精炼IF钢试验研究. 钢铁, 2010, 45(8):33
    [15] Li D M, Zhang W H, Lin L P, et al. Application of RH oxygen top-blowing technology in No.2 Steel-making Plant, WISCO. Steelmaking, 2007, 23(6): 5 doi: 10.3969/j.issn.1002-1043.2007.06.002

    李大明, 张文辉, 林立平, 等. RH顶吹氧技术在武钢第二炼钢厂的应用. 炼钢, 2007, 23(6):5 doi: 10.3969/j.issn.1002-1043.2007.06.002
    [16] Yuan B H, Liu J H, Zhou H L, et al. The vacuum decarburization process optimization study of high altitude RH refining equipment. Steelmaking, 2020, 36(4): 31

    袁保辉, 刘建华, 周海龙, 等. 高海拔RH精炼装置真空脱碳工艺优化研究. 炼钢, 2020, 36(4):31
    [17] Liu M, Bai F Q, Chen S S, et al. Application of water irrush source standard set in mine water prevention. Miner Eng Res, 2014, 29(3): 30

    刘猛, 白峰青, 陈少帅, 等. 水源判别标准集在矿井防治水中的应用. 矿业工程研究, 2014, 29(3):30
    [18] Xu M, Liu Z C, Yan X, et al. Online detection method for incremental capacity internal resistance consistency. Energy Storage Sci Technol, 2019, 8(6): 1197

    徐敏, 刘中财, 严晓, 等. 容量增量内阻一致性在线检测方法. 储能科学与技术, 2019, 8(6):1197
    [19] Hong J C, Wang Z P, Liu P. Big-data-based thermal runaway prognosis of battery systems for electric vehicles. Energies, 2017, 10(7): 919 doi: 10.3390/en10070919
    [20] Duan F C, Wu H Z. The production practice of ultra-low-carbon steel in thin slab continuous casting. Ind Heat, 2007, 36(6): 73 doi: 10.3969/j.issn.1002-1639.2007.06.027

    段富春, 吴华章. 薄板坯连铸超低碳钢生产实践. 工业加热, 2007, 36(6):73 doi: 10.3969/j.issn.1002-1639.2007.06.027
    [21] Song M T, Li M G, Yu H C. Research on refining process of ultra-low-carbon steel for thin slab casting. Steelmaking, 2009, 25(3): 8

    宋满堂, 李明光, 于华财. 超低碳钢薄板坯连铸钢水精炼工艺的研究. 炼钢, 2009, 25(3):8
    [22] Shen C, Song C, Shu H F, et al. Research of ULC steel production route combining RH-LF refining and CSP line. Iron Steel, 2008, 43(5): 26

    沈昶, 宋超, 舒宏富, 等. CSP批量生产超低碳钢的RH-LF双联工艺研究. 钢铁, 2008, 43(5):26
    [23] Liang Y J, Che Y C. Handle of Inorganic Thermody Namic Data. Shenyang: Northeast University Press, 1993

    梁英教, 车荫昌. 无机物热力学数据手册. 沈阳: 东北大学出版社, 1993
    [24] Cheng G G, Zhao P, Xu X L, et al. Process of vacuum denitrogenation of steel. Iron Steel, 1999, 34(1): 16 doi: 10.3321/j.issn:0449-749X.1999.01.005

    成国光, 赵沛, 徐学禄, 等. 真空下钢液脱氮工艺研究. 钢铁, 1999, 34(1):16 doi: 10.3321/j.issn:0449-749X.1999.01.005
    [25] Cao S. Control of end nitrogen content in smelting of ultra-low nitrogen steel with converter. Hebei Metall, 2015(10): 14

    曹盛. 超低氮钢转炉终点氮含量控制. 河北冶金, 2015(10):14
    [26] Kitamura T, Miyamoto K, Tsujino R, et al. Mathematical model for nitrogen desorption and decarburization reaction in vacuum degasser. ISIJ Int, 1996, 36(4): 395 doi: 10.2355/isijinternational.36.395
    [27] Wang M, Bao Y P, Cui H, et al. The composition and morphology evolution of oxide inclusions in Ti-bearing ultra low-carbon steel melt refined in the RH process. ISIJ Int, 2010, 50(11): 1606 doi: 10.2355/isijinternational.50.1606
    [28] Tang F P, Chang G H, Li H, et al. Inclusions in ultra-low carbon steel. Iron Steel, 2007, 42(1): 20

    唐复平, 常桂华, 栗红, 等. 超低碳钢钢中夹杂物的研究. 钢铁, 2007, 42(1):20
    [29] Dekkers R, Blanpain B, Wollants P, et al. A morphological comparison between inclusions in aluminium killed steels and deposits in submerged entry nozzle. Steel Res Int, 2003, 74(6): 351 doi: 10.1002/srin.200300197
    [30] Wang M, Bao Y P, Yang Q. Effect of Ferro-titanium alloying process on steel cleanness. J Univ Sci Technol Beijing, 2013, 35(6): 725

    王敏, 包燕平, 杨荃. 钛合金化过程对钢液洁净度的影响. 北京科技大学学报, 2013, 35(6):725
    [31] Pan M, Yu H X, Ji C X, et al. Effect of oxygen blowing during RH treatment on the cleanliness of IF steel. Chin J Eng, 2020, 42(7): 846

    潘明, 于会香, 季晨曦, 等. RH精炼过程中吹氧量对IF钢洁净度的影响. 工程科学学报, 2020, 42(7):846
    [32] Gao S, Wang M, Guo J L, et al. Evaluation of cleanliness and distribution of inclusions in the thickness direction of interstitial free(IF) steel slabs. Chin J Eng, 2020, 42(2): 194

    高帅, 王敏, 郭建龙, 等. IF钢铸坯厚度方向夹杂物分布及洁净度评估. 工程科学学报, 2020, 42(2):194
    [33] Stone R P, Jr. Figas R M, Branion R V. Productivity improvements in steelmaking via sensor-based steelmaking process control. Iron Steel Technol, 2006, 3(1): 31
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  414
  • HTML全文浏览量:  107
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-10
  • 网络出版日期:  2020-12-11
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回