Predicting the mechanical properties and composition optimization of a burn-resistant titanium alloy for aero-engines
-
摘要: 采用支持向量机算法,在实验数据的基础上,建立航空发动机阻燃钛合金的合金化元素与力学性能关系模型,分析合金化元素对力学性能的影响规律。模型的输入参数为V、Al、Si和C元素,输出参数为室温拉伸性能(抗拉强度、屈服强度、延伸率和断面收缩率)。结果表明:各个力学性能支持向量机模型的线性相关系数均在0.975以上,具有较高的预测能力;各个力学性能测试样本实验值与模型预测值的绝对百分误差均在5%以内,具有良好的泛化能力,能够有效地反映出阻燃钛合金的合金化元素与力学性能之间的定量关系,进而实现对该合金的成分优化。对于Ti−35V−15Cr阻燃钛合金,可以通过加入质量分数为0~0.1%的Si元素和质量分数为0.05%~0.125%的C元素,并减少质量分数为2%~5%的V元素,来提高力学性能;对于Ti−25V−15Cr阻燃钛合金,可以通过加入质量分数为1.5%~1.8%的Al元素和质量分数为0.15%~0.2%的C元素,来提高力学性能。Abstract: Lightweight high-temperature titanium alloys are a key material for aero-engines. With the increasing use of new titanium alloys in aero-engines, titanium fire has become a typical catastrophic fault that plagues material design and selection. A burn-resistant titanium alloy is a special material developed to deal with the problem of titanium fire. Its application in aero-engines has become one of the key technologies for the prevention and control of titanium fire. Therefore, explaining the influence of the alloying elements of burn-resistant titanium alloys on mechanical properties is important to provide an important theoretical basis for the design and application of these alloys. Based on the experimental data, the relationship model between the alloying elements and mechanical properties of a burn-resistant titanium alloy was established using a support vector machine algorithm, and the effect of the alloying elements on the mechanical properties was analyzed. The input parameters of the model were V, Al, Si, and C elements, and the output parameters were the room temperature tensile properties (tensile strength, yield strength, elongation, and the reduction of area). Results show that the linear correlation coefficient of each mechanical property of the SVM model is above 0.975, which signifies good prediction ability. The absolute percentage error between the predicted and experimental values of each mechanical property test sample is within 5%, indicating good generalization ability and an effective reflection of the quantitative relationship between the alloying elements and mechanical properties of the burn-resistant titanium alloy for optimizing the composition of the alloy. The mechanical properties of the Ti–35V–15Cr alloy can be improved by adding 0–0.1% Si element and 0.05%–0.125% C element and reducing 2%–5% V element. Meanwhile, the mechanical properties of the Ti–25V–15Cr alloy can be improved by adding 1.5%–1.8% Al element and 0.15%–0.2% C element.
-
表 1 Ti−V−Cr系阻燃钛合金实验值与支持向量机模型预测值的误差比较
Table 1. Error comparison of the mechanical properties of the experimental data with the predicted values using SVM
Sample Mass fraction/% Comparison Mechanical properties V Al Si C Tensile strength/MPa Yield strength/MPa Elongation/% Reduction of area/% 1 35.00 0 0 0 Experimental 1042 1028 10.0 15.0 Predicted 1042.10 1028.10 10.10 15.10 Absolute error/% 0.01 0.01 1.00 0.67 2 35.00 0 0.25 0 Experimental 1060 1032 15.1 19.5 Predicted 1059.90 1031.90 15.00 19.40 Absolute error/% 0.01 0.01 0.66 0.52 3 35.00 0 0.50 0 Experimental 1111 1080 7.3 11.0 Predicted 1110.90 1079.90 7.40 11.10 Absolute error/% 0.01 0.01 1.37 0.91 4 35.00 0 0 0.08 Experimental 1071 1005 18.4 33.0 Predicted 1060.60 997.32 18.30 32.90 Absolute error% 0.97 0.76 0.55 0.30 5 35.00 0 0.50 0.08 Experimental 1065 1005 19.0 33.5 Predicted 1065.10 1005.10 18.90 33.40 Absolute error/% 0.01 0.01 0.52 0.30 6 35.00 0 0 0.15 Experimental 1034 952 21.0 38.1 Predicted 1034.10 952.10 21.10 38.20 Absolute error/% 0.01 0.01 0.47 0.26 7* 25.50 2.60 0 0.27 Experimental 1070 1050 16.0 22.5 Predicted 1069.90 1049.90 14.66 23.11 Absolute error/% 0.01 0.01 8.39 2.70 8* 20.00 0 0.20 0 Experimental 960 933 24.5 46.0 Predicted 960.10 933.10 24.40 45.90 Absolute error/% 0.01 0.01 0.41 0.22 9* 30.00 0 0.20 0 Experimental 1025 973 20.0 38.5 Predicted 1024.90 973.10 19.90 32.84 Absolute error/% 0.01 0.01 0.50 14.70 10 35.00 0 0.30 0.10 Experimental 1025 964 17.2 33.0 Predicted 1024.90 963.90 17.30 33.10 Absolute error/% 0.01 0.01 0.58 0.30 11 35.20 0 0.17 0.07 Experimental 1026 963 16.5 29.4 Predicted 1026.10 970.16 16.60 29.50 Absolute error/% 0.01 0.74 0.61 0.34 12** 25.20 0 0.21 0 Experimental 969 942 18.5 30.4 Predicted 986.21 936.34 19.18 31.78 Absolute error/% 1.78 0.60 3.68 4.54 Note: **are test sets and the rest are training sets;* is the data from references [12,16]. -
参考文献
[1] Liang X Y, Mi G B, Li P J, et al. Theoretical study on ignition of titanium alloy under high temperature friction condition. Acta Phys Sin, 2020, 69(21): 343梁贤烨, 弭光宝, 李培杰, 等. 钛合金高温摩擦着火理论研究. 物理学报, 2020, 69(21):343 [2] Mi G B, Huang X, Cao J X, et al. Microstructure characteristics of burning products of Ti−V−Cr fireproof titanium alloy by frictional ignition. Acta Phys Sin, 2016, 65(5): 056103 doi: 10.7498/aps.65.056103弭光宝, 黄旭, 曹京霞, 等. 摩擦点火Ti−V−Cr阻燃钛合金燃烧产物的组织特征. 物理学报, 2016, 65(5):056103 doi: 10.7498/aps.65.056103 [3] Zhao Y Q, Zhu K Y, Qu H L, et al. Microstructures of a burn resistant highly stabilized β-titanium alloy. Mater Sci Eng:A, 2000, 282(1-2): 153 doi: 10.1016/S0921-5093(99)00761-3 [4] Ouyang P X, Mi G B, Cao J X, et al. Microstructure characteristics after combustion and fireproof mechanism of TiAl-based alloys. Mater Today Commun, 2018, 16: 364 doi: 10.1016/j.mtcomm.2018.07.012 [5] Xiong J S, Huang J F, Xie G L, et al. Effect of electroplating Cr coating on combustion characteristics of TC4 titanium alloy. Chin J Eng, 2020, 42(8): 1007熊家帅, 黄进峰, 解国良, 等. 电镀Cr涂层对TC4钛合金燃烧性能的影响. 工程科学学报, 2020, 42(8):1007 [6] Liang X Y, Mi G B Li P J, et al. Theoretical calculation of characteristics on titanium fire in aero-engine. J Aeronaut Mater, 2021, 41(6): 59梁贤烨, 弭光宝, 李培杰, 等. 航空发动机钛火特性理论计算研究. 航空材料学报, 2021, 41(6):59 [7] Mi G B, Yao K, Min X H. Effect of temperature on wear behavior in a Ti-V-Cr base fireproof titanium alloy. Int J Precis Eng Manuf, 2017, 18: 1553 doi: 10.1007/s12541-017-0184-3 [8] Hood R, Johnson C M, Soo S L, et al. High-speed ball nose end milling of burn-resistant titanium (BuRTi) alloy. Int J Comput Integr Manuf, 2014, 27(2): 139 doi: 10.1080/0951192X.2013.801563 [9] Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of carbon and oxygen on microstructure and mechanical properties of Ti−25V−15Cr−2Al (wt%) alloys. Acta Mater, 1999, 47(10): 2889 doi: 10.1016/S1359-6454(99)00173-1 [10] Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of aluminium on deformation structure of highly stabilised β-Ti−V−Cr alloys. Mater Sci Technol, 1999, 15(2): 151 doi: 10.1179/026708399101505680 [11] Sun F S, Lavernia E J. Creep behavior of nonburning Ti−35V−15Cr−xC alloys. J Mater Eng Perform, 2005, 14(6): 784 doi: 10.1361/105994905X75619 [12] Xin S W, Zhao Y Q, Zeng W D, et al. Effect of V on the thermal stability and creep of Ti−V−Cr burn-resistant titanium alloy. Rare Met Mater Eng, 2007, 36(11): 2031 doi: 10.3321/j.issn:1002-185x.2007.11.036辛社伟, 赵永庆, 曾卫东, 等. V元素对Ti−V−Cr系阻燃钛合金热强性的影响. 稀有金属材料与工程, 2007, 36(11):2031 doi: 10.3321/j.issn:1002-185x.2007.11.036 [13] Mi G B, Huang X, Cao J X, et al. Ignition resistance performance and its theoretical analysis of Ti−V−Cr type fireproof titanium alloys. Acta Metall Sin, 2014, 50(5): 575弭光宝, 黄旭, 曹京霞, 等. Ti−V−Cr系阻燃钛合金的抗点燃性能及其理论分析. 金属学报, 2014, 50(5):575 [14] Cao J X, Huang X, Mi G B, et al. Research progress on application technique of Ti−V−Cr burn resistant titanium alloys. J Aeronaut Mater, 2014, 34(4): 92 doi: 10.11868/j.issn.1005-5053.2014.4.009曹京霞, 黄旭, 弭光宝, 等. Ti−V−Cr系阻燃钛合金应用研究进展. 航空材料学报, 2014, 34(4):92 doi: 10.11868/j.issn.1005-5053.2014.4.009 [15] Lai Y J, Zhang P X, Xin S W, et al. Research progress on engineered technology of burn-resistant titanium alloys in China. Rare Met Mater Eng, 2015, 44(8): 2067赖运金, 张平祥, 辛社伟, 等. 国内阻燃钛合金工程化技术研究进展. 稀有金属材料与工程, 2015, 44(8):2067 [16] Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti−V−Cr burn resistant titanium alloys. Chin J Mater Res, 2019, 33(7): 537 doi: 10.11901/1005.3093.2019.090孙欢迎, 赵军, 刘翊安, 等. C含量对Ti−V−Cr系阻燃钛合金微观组织和力学性能的影响. 材料研究学报, 2019, 33(7):537 doi: 10.11901/1005.3093.2019.090 [17] Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: A review on methods and applications of machine learning for materials design. Engineering, 2019, 5(6): 1017 doi: 10.1016/j.eng.2019.02.011 [18] Wang H, Xiang X D, Zhang L T. Data+AI: The core of materials genomic engineering. Sci Technol Rev, 2018, 36(14): 15汪洪, 项晓东, 张澜庭. 数据+人工智能是材料基因工程的核心. 科技导报, 2018, 36(14):15 [19] Wu W, Sun Q. Applying machine learning to accelerate new materials development. Sci Sin Phys Mech Astron, 2018, 48(10): 58吴炜, 孙强. 应用机器学习加速新材料的研发. 中国科学:物理学 力学 天文学, 2018, 48(10):58 [20] Malinov S, Sha W, McKeown J J. Modelling the correlation between processing parameters and properties in titanium alloys using artificial neural network. Comput Mater Sci, 2001, 21(3): 375 doi: 10.1016/S0927-0256(01)00160-4 [21] Noori Banu P S, Devaki Rani S. Knowledge-based artificial neural network model to predict the properties of alpha+ beta titanium alloys. J Mech Sci Technol, 2016, 30(8): 3625 doi: 10.1007/s12206-016-0723-3 [22] Sun L N. Heat treatment process optimization of directional solidification titanium alloys based on neural network. Ordnance Mater Sci Eng, 2017, 40(4): 30孙丽娜. 定向凝固钛合金热处理工艺的神经网络优化. 兵器材料科学与工程, 2017, 40(4):30 [23] Noori Banu P S, Devaki Rani S. Artificial neural network based optimization of prerequisite properties for the design of biocompatible titanium alloys. Comput Mater Sci, 2018, 149: 259 doi: 10.1016/j.commatsci.2018.03.039 [24] Xu J J, Wang F. Tensile strength forecasting model foundation and checking of Ti−Al−V series Ti alloys. Hot Work Technol, 2018, 47(10): 72许佳佳, 王飞. Ti−Al−V系钛合金抗拉强度预测模型的建立及验证. 热加工工艺, 2018, 47(10):72 [25] Zhang X M, Xi Y Q, Li M, et al. Prediction of superplastic deformation behavior of WSTi3515S burn-resistant titanium alloy based on BP artificial neural network. Special Cast Nonferrous Alloys, 2019, 39(6): 668张学敏, 惠玉强, 李咪, 等. 基于BP神经网络的WSTi3515S阻燃钛合金超塑性变形行为预测. 特种铸造及有色合金, 2019, 39(6):668 [26] Zhou X H, Lou M Q, Zhang X M, et al. Prediction of effect of thermal exposure on tensile properties of TC4 titanium alloy based on neural network. Hot Work Technol, 2019, 48(14): 128周晓虎, 楼美琪, 张学敏, 等. 基于神经元网络的热暴露对TC4钛合金拉伸性能影响预测. 热加工工艺, 2019, 48(14):128 [27] Anand P, Rastogi R, Chandra S. A class of new support vector regression models. Appl Soft Comput, 2020, 94: 106446 doi: 10.1016/j.asoc.2020.106446 [28] Sun H Y, Zhao J, Liu Y A, et al. Microstructure and mechanical properties of a new type burn resistant titanium alloy with lower cost. Rare Met Mater Eng, 2019, 48(6): 1892孙欢迎, 赵军, 刘翊安, 等. 一种新型低成本阻燃钛合金的微观组织与力学性能. 稀有金属材料与工程, 2019, 48(6):1892 -