• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于云理论的大坝整体性态评价模型

姜振翔 陈辉 陈柏全

姜振翔, 陈辉, 陈柏全. 基于云理论的大坝整体性态评价模型[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.10.15.001
引用本文: 姜振翔, 陈辉, 陈柏全. 基于云理论的大坝整体性态评价模型[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.10.15.001
JIANG Zhen-xiang, CHEN Hui, CHEN Bai-quan. Evaluation model of overall dam behavior based on cloud theory[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.10.15.001
Citation: JIANG Zhen-xiang, CHEN Hui, CHEN Bai-quan. Evaluation model of overall dam behavior based on cloud theory[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.10.15.001

基于云理论的大坝整体性态评价模型

doi: 10.13374/j.issn2095-9389.2020.10.15.001
基金项目: 江西省教育厅科学技术研究项目(GJJ190970)
详细信息
    通讯作者:

    jiangzhenxiang89@163.com

  • 中图分类号: TV39

Evaluation model of overall dam behavior based on cloud theory

More Information
  • 摘要: 现有的大坝整体性态评价方法以定性评价为主,主观性较强。针对这一问题,以单测点监控模型的计算值与监测仪器实测值之间的残差为基础,提出采用多测点融合残差表征大坝整体性态。结合信息熵理论研究了不同测点的残差变化规律,从而对各测点残差的融合权重进行了分配,计算了融合残差。通过对融合残差进行分布分析,利用逆向云发生器、正向云发生器建立了表征大坝不同性态的概念云,即评价标准。在此基础上,结合云相似度算法,建立了大坝整体性态的评价模型。算例表明,该模型能够有效识别大坝监测资料中的异常测值,并能够定量、客观地评价大坝整体性态,评价结果合理、可靠,可为保障大坝安全运行提供重要参考。

     

  • 图  1  云的数字特征和外包络曲线

    Figure  1.  Characteristics and envelope curves of the cloud

    图  2  不同相交条件下的云重叠面积。(a)全云CqCl相交,一个交点;(b)全云CqCl相交,两个交点;(c)半云CqCl相交,一个交点;(d)半云CqCl相交,两个交点

    Figure  2.  Overlapping area of clouds under different intersection conditions: (a) entire cloud Cq intersecting Cl with one intersection; (b) entire cloud Cq intersecting Cl with two intersections; (c) half cloud Cq intersecting Cl with one intersection; (d) half cloud Cq intersecting Cl with two intersections

    图  3  $ {\boldsymbol{\varDelta}} $概率密度曲线及下分位点位置示意

    Figure  3.  Probability density curve of $ {\boldsymbol{\varDelta}} $ and the fractile

    图  4  混凝土坝监测信息。(a)坝顶引张线示意图;(b)EX401~EX409测点过程线;(c)上游水位与温度过程线

    Figure  4.  Monitoring information of a concrete dam: (a) extension line in the dam crest; (b) process line of EX401‒EX409; (c) process line of the upstream water level and temperature

    图  5  融合残差过程线

    Figure  5.  Process line of fusion residual

    图  6  融合残差特征。(a)融合残差的概率密度曲线与特征分位点;(b)大坝整体性态评价标准(概念云)

    Figure  6.  Characteristics of fusion residuals: (a) probability density curve of fusion residuals and feature quantiles; (b) evaluation criteria for the integrity of a dam (conceptual cloud)

    图  7  概念云与评价云(2010—2014年)外包络曲线。(a)2010年;(b)2011年;(c)2012年;(d)2013年;(e)2014年

    Figure  7.  Concept cloud and evaluation cloud envelope curve during year of 2010—2014: (a) 2010; (b) 2011; (c) 2012; (d) 2013; (e) 2014

    表  1  云重叠面积计算方法

    Table  1.   Calculation method of the cloud overlapping area

    Intersection diagramAbscissa of the intersectionSCalculation method
    Fig.2(a)$ {x_{\text{a}}} $$ {S_1} + {S_2} $$ \int_{{E_{{\text{x,}}}}_l - 3{E_{{\text{n,}}}}_l}^{{x_{\text{a}}}} {{y_l}(x){\text{d}}x + \int_{{x_{\text{a}}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $
    Fig.2(b)$ {x_{\text{b}}},\;{x_{\text{c}}} $$ {S_1} + {S_2} + {S_3} $$ \int_{{E_{{\text{x,}}q}} - 3{E_{{\text{n,}}q}}}^{{x_{\text{b}}}} {{y_q}(x){\text{d}}x + \int_{{x_{\text{b}}}}^{{x_{\text{c}}}} {{y_l}(x){\text{d}}x} + \int_{{x_{\text{c}}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $
    Fig.2(c)$ {x_{\text{d}}} $$ {S_1} + {S_2} $$ \int_{{E_{{\text{x,}}l}} - 3{E_{{\text{n,}}l}}}^{{x_{\text{d}}}} {{y_l}(x){\text{d}}x + \int_{{x_d}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $
    Fig.2(d)$ {x_{\text{e}}},\;{x_{\text{f}}} $$ {S_1} + {S_2} + {S_3} $$ \int_{{E_{{\text{x,}}q}} - 3{E_{{\text{n,}}q}}}^{{x_{\text{e}}}} {{y_q}(x){\text{d}}x + \int_{{x_{\text{e}}}}^{{x_{\text{f}}}} {{y_l}(x){\text{d}}x} + \int_{{x_{\text{f}}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} } $
    $ {S_q} $$ \int_{{E_{{\text{x,}}q}} - 3{E_{{\text{n,}}q}}}^{{E_{{\text{x,}}q}} + 3{E_{{\text{n,}}q}}} {{y_q}(x){\text{d}}x} $
    $ {S_l} $$ \int_{{E_{{\text{x,}}l}} - 3{E_{{\text{n,}}l}}}^{{E_{{\text{x,}}l}} + 3{E_{{\text{n,}}l}}} {{y_l}(x){\text{d}}x} $
    下载: 导出CSV

    表  2  大坝整体性态评价标准(概念云)

    Table  2.   Evaluation criteria for the integrity of a dam (conceptual cloud)

    Concept cloudQualitative conceptExtraction range of cloud feature parameters
    ${C_1}$Abnormal$( - \infty ,\;{\mu _{0.025}})$
    ${C_2}$Basically normal$[{\mu _{0.025}},\;{\mu _{0.150}})$
    ${C_3}$Normal$[{\mu _{0.150}},\;{\mu _{0.850}})$
    ${C_4}$Basically normal$[{\mu _{0.850}},\;{\mu _{0.975}})$
    ${C_5}$Abnormal$[{\mu _{0.975}},\; + \infty )$
    下载: 导出CSV

    表  3  EX401~EX409监控模型计算值与实测值相关系数

    Table  3.   Correlation coefficient between the calculated value and measured value of EX401‒EX409

    EX401EX402EX403EX404EX405EX406EX407EX408EX409
    0.8640.8110.8230.8950.8720.8890.8250.8140.802
    下载: 导出CSV

    表  4  各测点残差的权重

    Table  4.   Weight of residuals of each point

    EX401EX402EX403EX404EX405EX406EX407EX408EX409
    0.0620.1390.2070.0580.0680.0720.1120.1380.144
    下载: 导出CSV

    表  5  概念云特征参数

    Table  5.   Characteristic parameters of the concept cloud

    Concept cloudQualitative conceptExtraction range of cloud feature parametersExEnHe
    ${C_1}$Abnormal$( - \infty ,\;{\mu _{0.025}})$−1.69480.27550.0307
    ${C_2}$Basically normal$[{\mu _{0.025}},\;{\mu _{0.150}})$−0.9920.18670.0486
    ${C_3}$Normal$[{\mu _{0.150}},\;{\mu _{0.850}})$−0.01710.4070.1358
    ${C_4}$Basically normal$[{\mu _{0.850}},\;{\mu _{0.975}})$1.07760.2470.0825
    ${C_5}$Abnormal$[{\mu _{0.975}},\; + \infty )$1.88140.24240.113
    下载: 导出CSV

    表  6  2010—2014年各年度云特征参数

    Table  6.   Cloud parameters for each year from 2010—2014

    Year${E_{\text{x}}}$${E_{\text{n}}}$${H_{\text{e}}}$
    2010−0.13260.69390.2186
    2011−0.23360.63080.1534
    20120.07920.77810.2951
    2013−1.10440.42790.1125
    2014−0.21230.70980.2003
    下载: 导出CSV

    表  7  2010—2014年各年评价云与概念云的相似度

    Table  7.   Similarity between evaluating clouds and concept clouds from 2010 to 2014

    Year${\eta _1}$${\eta _2}$${\eta _3}$${\eta _4}$${\eta _5}$Evaluation results
    20100.1040.2630.7570.3350.135Normal
    20110.1080.3020.8960.2830.109Normal
    20120.0940.2230.6320.3420.149Normal
    20130.1960.4990.3840.0490.016Basically normal
    20140.1060.2690.7610.3130.125Normal
    下载: 导出CSV
  • [1] Zhu B F. China is the largest and strongest country of concrete arch dams in the world. Water Resour Hydropower Eng, 2017, 48(2): 1

    朱伯芳. 中国是世界拱坝大国也是世界拱坝强国——在《特高拱坝建设总结及安全运行管理研究》会议上的发言. 水利水电技术, 2017, 48(2):1
    [2] Gu C S, Su H Z, Wang S W. Advances in calculation models and monitoring methods for long-term deformation behavior of concrete dams. J Hydroelectr Eng, 2016, 35(5): 1 doi: 10.11660/slfdxb.20160501

    顾冲时, 苏怀智, 王少伟. 高混凝土坝长期变形特性计算模型及监控方法研究进展. 水力发电学报, 2016, 35(5):1 doi: 10.11660/slfdxb.20160501
    [3] Li M C, Ren Q B, Kong R, et al. Dynamic modeling and prediction analysis of dam deformation under multidimensional complex relevance. J Hydraul Eng, 2019, 50(6): 687

    李明超, 任秋兵, 孔锐, 等. 多维复杂关联因素下的大坝变形动态建模与预测分析. 水利学报, 2019, 50(6):687
    [4] Dong D D, Zu A J, Sun X L. Model of dam deformation monitoring based on genetic ant colony optimization and back propagation improved by Markov chain. J Yangtze River Sci Res Inst, 2019, 36(7): 48 doi: 10.11988/ckyyb.20171438

    董丹丹, 祖安君, 孙雪莲. 基于GACO-BP-MC的大坝变形监控模型. 长江科学院院报, 2019, 36(7):48 doi: 10.11988/ckyyb.20171438
    [5] Wei B W, Peng S J, Xu Z K, et al. The GA-BP prediction model considering chaos effect of dam displacement residual. Sci Sin Technol, 2015, 45(5): 541 doi: 10.1360/N092014-00181
    [6] Hu D X, Qu X D, Yang J, et al. A safety monitoring model of dam deformation based on M-ELM. Adv Sci Technol Water Resour, 2019, 39(3): 75 doi: 10.3880/j.issn.1006-7647.2019.03.013

    胡德秀, 屈旭东, 杨杰, 等. 基于M-ELM的大坝变形安全监控模型. 水利水电科技进展, 2019, 39(3):75 doi: 10.3880/j.issn.1006-7647.2019.03.013
    [7] Dai B, Gu C S, Zhao E F, et al. Statistical model optimized random forest regression model for concrete dam deformation monitoring. Struct Control Health Monitor, 2018, 25(6): e2170 doi: 10.1002/stc.2170
    [8] Kang F, Liu J, Li J J, et al. Concrete dam deformation prediction model for health monitoring based on extreme learning machine. Struct Control Health Monitor, 2017, 24(10): e1997 doi: 10.1002/stc.1997
    [9] Gamse S, Oberguggenberger M. Assessment of long-term coordinate time series using hydrostatic-season-time model for rock-fill embankment dam. Struct Control Health Monitor, 2017, 24(1): e1859 doi: 10.1002/stc.1859
    [10] Gamse S, Henriques M J, Oberguggenberger M, et al. Analysis of periodicities in long-term displacement time series in concrete dams. Struct Control Health Monitor, 2020, 27(3): e2477
    [11] Liu X, Wu Z R, Yang Y, et al. Information fusion diagnosis and early-warning method for monitoring the long-term service safety of high dams. J Zhejiang Univ Sci A Appl Phys Eng, 2012, 13(9): 687 doi: 10.1631/jzus.A1200122
    [12] He J P, Ma C B, Shi Y Q. Multi-effect-quantity fusion model of high arch dam based on improved D-S evidence theory. Geomat Inf Sci Wuhan Univ, 2012, 37(12): 1397

    何金平, 马传彬, 施玉群. 高拱坝多效应量改进型D-S证据理论融合模型. 武汉大学学报(信息科学版), 2012, 37(12):1397
    [13] Su H Z, Wen Z P, Sun X R, et al. Multisource information fusion-based approach diagnosing structural behavior of dam engineering. Struct Control Health Monitor, 2018, 25(2): e2073 doi: 10.1002/stc.2073
    [14] Yu H, Wu Z R, Bao T F, et al. Multivariate analysis in dam monitoring data with PCA. Sci China Technol Sci, 2010, 53(4): 1088 doi: 10.1007/s11431-010-0060-1
    [15] He J P. Theory and Application of Dam Safety Monitoring. Beijing: China Water & Power Press, 2010

    何金平. 大坝安全监测理论与应用. 北京: 中国水利水电出版社, 2010
    [16] Härdle W K, Simar L. Applied Multivariate Statistical Analysis. Upper Saddle River: Springer-Verlag Berlin Heidelberg, 2015
    [17] Sun W Z, Yin X D, Li S J. A new navigation data fusion method based on entropy coefficient algorithm for underwater vehicles. Geomat Inf Sci Wuhan Univ, 2018, 43(10): 1465

    孙文舟, 殷晓冬, 李树军. 基于熵权重的水下载体导航信息融合方法. 武汉大学学报(信息科学版), 2018, 43(10):1465
    [18] Liu H X, Yuan Y M, Zhou P, et al. Normal cloud model for condition evaluation of wind turbines based on fusion theory. Acta Energ Sol Sin, 2018, 39(10): 2891

    刘华新, 苑一鸣, 周沛, 等. 基于融合理论的风电机组状态评价正态云模型. 太阳能学报, 2018, 39(10):2891
    [19] Du J, Sun M Y. Hierarchical assessment method of transformer condition based on weight-varying grey cloud model. Trans China Electrotech Soc, 2020, 35(20): 4306

    杜江, 孙铭阳. 基于变权灰云模型的变压器状态层次评估方法. 电工技术学报, 2020, 35(20):4306
    [20] Zhang M Y, Wang S X, Sun Z Z, et al. Comprehensive evaluation of landslide risks of oil and gas pipelines based on cloud theory. Chin J Eng, 2018, 40(4): 427

    张满银, 王生新, 孙志忠, 等. 基于云理论的油气管道滑坡危险性综合评价. 工程科学学报, 2018, 40(4):427
    [21] Li L B, Guo X F, Fu J N, et al. Evaluation approach of passenger satisfaction for urban rail transit based on cloud model. J Tongji Univ Nat Sci, 2019, 47(3): 378

    李林波, 郭晓凡, 傅佳楠, 等. 基于云模型的城市轨道交通乘客满意度评价. 同济大学学报(自然科学版), 2019, 47(3):378
    [22] Li S S, Cui T J, Ma Y D, et al. Cloud similarity based on the envelope and its application to the safety assessment. J Saf Environ, 2017, 17(4): 1267

    李莎莎, 崔铁军, 马云东, 等. 基于包络线的云相似度及其在安全评价中的应用. 安全与环境学报, 2017, 17(4):1267
    [23] Wang J, Zhu J J, Liu X D. An integrated similarity measure method for normal cloud model based on shape and distance. System Eng Theory Pract, 2017, 37(3): 742 doi: 10.12011/1000-6788(2017)03-0742-10

    汪军, 朱建军, 刘小弟. 兼顾形状-距离的正态云模型综合相似度测算. 系统工程理论与实践, 2017, 37(3):742 doi: 10.12011/1000-6788(2017)03-0742-10
    [24] Li H L, Guo C H, Qiu W R. Similarity measurement between normal cloud models. Acta Electron Sin, 2011, 39(11): 2561

    李海林, 郭崇慧, 邱望仁. 正态云模型相似度计算方法. 电子学报, 2011, 39(11):2561
    [25] Kao C Y, Loh C H. Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Struct Control Health Monitor, 2013, 20(3): 282 doi: 10.1002/stc.492
    [26] Li T L, He A N, Shao J, et al. Copula-based model for hot-rolling back-up roll health prediction. Chin J Eng, 2020, 42(6): 787

    李天伦, 何安瑞, 邵健, 等. 基于Copula函数的热轧支持辊健康状态预测模型. 工程科学学报, 2020, 42(6):787
    [27] Fu L W, Wu S. A new internal clustering validation index for categorical data based on concentration of attribute values. Chin J Eng, 2019, 41(5): 682

    傅立伟, 武森. 基于属性值集中度的分类数据聚类有效性内部评价指标. 工程科学学报, 2019, 41(5):682
    [28] Xu B, Li Z C, Huang Z H, et al. Cloud model diagnosis method of concrete dam crack behavior abnormality. Sci Sin Technol, 2015, 45(11): 1218 doi: 10.1360/N092014-00195

    徐波, 李占超, 黄志洪, 等. 混凝土坝裂缝转异诊断的云模型法. 中国科学(技术科学), 2015, 45(11):1218 doi: 10.1360/N092014-00195
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  310
  • HTML全文浏览量:  81
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 网络出版日期:  2020-12-11

目录

    /

    返回文章
    返回