• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鞍山式贫赤铁矿不同种类分选尾矿中铁的赋存规律

张瑞洋 毛宇宇 李正要 李东 张学进

张瑞洋, 毛宇宇, 李正要, 李东, 张学进. 鞍山式贫赤铁矿不同种类分选尾矿中铁的赋存规律[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.10.28.008
引用本文: 张瑞洋, 毛宇宇, 李正要, 李东, 张学进. 鞍山式贫赤铁矿不同种类分选尾矿中铁的赋存规律[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.10.28.008
ZHANG Rui-yang, MAO Yu-yu, LI Zheng-yao, LI Dong, ZHANG Xue-jin. Study of the occurrence law of iron in different types of sorting tailings of Anshan-type low-grade hematite[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.10.28.008
Citation: ZHANG Rui-yang, MAO Yu-yu, LI Zheng-yao, LI Dong, ZHANG Xue-jin. Study of the occurrence law of iron in different types of sorting tailings of Anshan-type low-grade hematite[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.10.28.008

鞍山式贫赤铁矿不同种类分选尾矿中铁的赋存规律

doi: 10.13374/j.issn2095-9389.2020.10.28.008
基金项目: 国家自然科学基金青年科学基金资助项目(51904020);中央高校基本科研业务费资助项目(FRF-TP-19-033A2)
详细信息
    通讯作者:

    E-mail: zyli0213@sina.com

  • 中图分类号: TD92;TD951.1

Study of the occurrence law of iron in different types of sorting tailings of Anshan-type low-grade hematite

More Information
  • 摘要: 以齐大山铁矿选矿分厂铁尾矿为例,对重选尾矿、磁选尾矿、浮选尾矿和综合尾矿4种不同种类尾矿的工艺矿物学性质进行对比分析,并对尾矿中铁的可回收性进行评价。研究结果表明,尾矿中铁矿物主要为赤铁矿,脉石矿物主要是石英,有害元素S、P的含量低;尾矿中铁的金属分布率随着粒级的变化,呈两端高、中间低的规律。重选尾矿中铁矿物主要包裹在粗颗粒脉石中,浮选尾矿中铁矿物主要赋存在细颗粒连生体中,磁选尾矿中的铁矿物粒度极细,综合尾矿粒度范围宽、粒度分布极不均匀。采用单一重选和磁选方法对不同种类尾矿进行再选,浮选尾矿指标最佳,重选尾矿次之,综合尾矿最差,磁选尾矿属于不可选。鞍山式贫赤铁矿分选尾矿中铁的赋存状态决定了铁的再回收潜力,可为此类分选尾矿的处理提供理论借鉴。

     

  • 图  1  鞍山式贫赤铁矿分选的原则流程及取样点分布

    Figure  1.  Principle flowsheet and sampling point distribution of Anshan-type low-grade hematite

    图  2  不同种类尾矿的XRD分析结果

    Figure  2.  XRD results of different tailings

    图  3  尾矿中铁的矿物组成分析

    Figure  3.  Mineral composition analysis of iron in different tailings

    图  4  不同种类尾矿中铁的磁性率

    Figure  4.  Magnetic susceptibility of iron in different tailings

    图  5  尾矿的粒度特性及铁矿物单体解离情况。(a)重选尾矿;(b)磁选尾矿;(c)浮选尾矿;(d)综合尾矿

    Figure  5.  Particle size distribution and liberation conditions of iron minerals in different tailings: (a)gravity tailings;(b)magnetic tailings;(c)flotation tailings;(d)mixed tailings

    图  6  尾矿不同粒级中铁的分布规律。(a)铁品位;(b)金属分布率

    Figure  6.  Distribution of iron in tailings with different particle sizes: (a) iron grade; (b) iron distribution.

    图  7  尾矿镜下观察。(a)重选尾矿;(b)磁选尾矿;(c)浮选尾矿;(d)综合尾矿

    Figure  7.  Observation of tailings under microscope: (a) gravity tailings; (b) magnetic tailings; (c) flotation tailings; (d) mixed tailings

    图  8  重选对不同种类尾矿中铁的回收效果

    Figure  8.  Effect of gravity separation on iron recovery from different tailings

    1—gravity tailings: shaker; 2—gravity tailings: screening-shaker; 3—magnetic tailings: shaker; 4—flotation tailings: shaker; 5—flotation tailings: classification-shaker; 6—flotation tailings: classification-screening-shaker; 7—mixed tailings: shaker; 8—mixed tailings: classification-shaker; 9—mixed tailings: classification-screening-shaker

    图  9  弱磁选对不同种类尾矿中铁的回收效果

    Figure  9.  Effect of low-intensity magnetic separation on iron recovery from different tailings

    1—gravity tailings: magnetic separation; 2—magnetic tailings: magnetic separation; 3—flotation tailings: magnetic separation; 4—flotation tailings: regrinding-magnetic separation; 5—mixed tailings: magnetic separation; 6—mixed tailings: regrinding-magnetic separation

    表  1  不同种类尾矿的化学成分分析(质量分数)

    Table  1.   Chemical element analysis of the different tailings (mass fraction) %

    SampleTFeSiO2Al2O3CaOMgOPMnOS
    Gravity tailings10.4684.270.340.370.690.0170.100.023
    Magnetic tailings7.5183.571.260.621.610.0480.120.017
    Flotation tailings19.8765.381.630.681.710.0230.150.077
    Mixed tailings10.0082.291.070.390.820.0120.0980.026
    下载: 导出CSV
  • [1] Ju H X, Hu W T, Liu X W, et al. Reengineering and selective recovery of iron-bearing silicate minerals. Chin J Eng, 2015, 37(10): 1268

    鞠会霞, 胡文韬, 刘欣伟, 等. 含铁硅酸盐矿物重构与选择性回收. 工程科学学报, 2015, 37(10):1268
    [2] Li H M, Zhang Z J, Li L X, et al. Types and general characteristics of the BIF-related iron deposits in China. Ore Geol Rev, 2014, 57: 264 doi: 10.1016/j.oregeorev.2013.09.014
    [3] Zhang Z C, Hou T, Santosh M, et al. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geol Rev, 2014, 57: 247 doi: 10.1016/j.oregeorev.2013.08.021
    [4] Zhang D J, Agterberg F, Cheng Q M, et al. A comparison of modified fuzzy weights of evidence, fuzzy weights of evidence, and logistic regression for mapping mineral prospectivity. Math Geosci, 2014, 46(7): 869 doi: 10.1007/s11004-013-9496-8
    [5] Li Z J, Qiao G G, Mi X Y, et al. Energy savings during magnetite ore preparation in eastern Hebei Province. J China Univ Min Technol, 2008, 37(5): 625 doi: 10.3321/j.issn:1000-1964.2008.05.009

    李占金, 乔国刚, 米雪玉, 等. 冀东磁铁矿石粉碎过程节能降耗研究. 中国矿业大学学报, 2008, 37(5):625 doi: 10.3321/j.issn:1000-1964.2008.05.009
    [6] Yin W Z, Ding Y Z. New Technology and Equipment for Iron Ore Dressing. Beijing: Metallurgical Industry Press, 2008

    印万忠, 丁亚卓. 铁矿选矿新技术与新设备. 北京: 冶金工业出版社, 2008
    [7] Yin J N, Lindsay M, Teng S R. Mineral prospectivity analysis for BIF iron deposits: A case study in the Anshan-Benxi area, Liaoning Province, North-East China. Ore Geol Rev, 2020, 120: 102746 doi: 10.1016/j.oregeorev.2018.11.019
    [8] Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0
    [9] Li L X, Zhu Y L, Yuan Z T, et al. Mechanism for higher iron grade of reverse flotation tailings of Anshan-type hematite ore. J Northeast Univ Nat Sci, 2013, 34(11): 1647 doi: 10.12068/j.issn.1005-3026.2013.11.030

    李丽匣, 朱玉兰, 袁致涛, 等. 鞍山式赤铁矿石反浮选尾矿铁品位偏高机制. 东北大学学报(自然科学版), 2013, 34(11):1647 doi: 10.12068/j.issn.1005-3026.2013.11.030
    [10] Gao P, Ji X, Ren D Z, et al. Iron recovery from flotation middling produced in carbonates-bearing hematite ore using coal-based reduction. J China Univ Min Technol, 2013, 42(5): 812

    高鹏, 纪新, 任多振, 等. 含碳酸盐赤铁矿石浮选中矿深度还原试验研究. 中国矿业大学学报, 2013, 42(5):812
    [11] Cui B Y, Wei D Z, Li T S, et al. Optimization of beneficiation technology on iron mine from qidashan. Met Mine, 2016(8): 75 doi: 10.3969/j.issn.1001-1250.2016.08.015

    崔宝玉, 魏德洲, 李天舒, 等. 齐大山铁矿选矿工艺优化研究. 金属矿山, 2016(8):75 doi: 10.3969/j.issn.1001-1250.2016.08.015
    [12] Tang C, Li K Q, Ni W, et al. Recovering iron from iron ore tailings and preparing concrete composite admixtures. Minerals, 2019, 9(4): 232 doi: 10.3390/min9040232
    [13] Wang Y M, Tian J Y, Wang H J, et al. Beneficiation Practice of Ferrous Metal Ore in China. Beijing: Science Press, 2008

    王运敏, 田嘉印, 王化军, 等. 中国黑色金属矿选矿实践. 北京: 科学出版社, 2008
    [14] Zhang R Y. Experimental Research on Recovery of Iron Contained in the Separation Tailings of Anshan-Type Iron Ore [Dissertation]. Shenyang: Northeastern University, 2011

    张瑞洋. 鞍山式铁矿石分选尾矿中铁的回收试验研究[学位论文]. 沈阳: 东北大学, 2011
    [15] Fan D C. Research on Pre-Concentration and Deep Reduction of Qidashan Iron Ore Tailings and the Comprehensive Utilization of Tailings [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    范敦城. 齐大山铁尾矿预富集—深度还原提铁及尾渣综合利用研究[学位论文]. 北京: 北京科技大学, 2018
    [16] Li J, Ni W, Fan D C, et al. Process mineralogy research on iron tailings from qidashan. Met Mine, 2014(1): 158

    李瑾, 倪文, 范敦城, 等. 齐大山铁尾矿工艺矿物学研究. 金属矿山, 2014(1):158
    [17] Liu W G, Wei D Z, Wang X H, et al. Application of Direct-reverse Flotation in Reconcentration of iron ore tailings from Reverse Flotation. Met Mine, 2011(1): 147

    刘文刚, 魏德洲, 王晓慧, 等. 反浮选铁尾矿正—反浮选再选研究. 金属矿山, 2011(1):147
    [18] Yu J W, Han Y X, Li Y J, et al. Pre-enrichment behaviors of low-grade donganshan iron ore using magnetic separation. J Northeast Univ Nat Sci, 2019, 40(1): 94 doi: 10.12068/j.issn.1005-3026.2019.01.018

    余建文, 韩跃新, 李艳军, 等. 东鞍山贫铁矿石磁选预富集行为. 东北大学学报(自然科学版), 2019, 40(1):94 doi: 10.12068/j.issn.1005-3026.2019.01.018
    [19] Cao S M, Cao Y J, Ma Z L, et al. The flotation separation of fine pyrite locked in coking coal. J China Univ Min Technol, 2019, 48(6): 1366

    曹世明, 曹亦俊, 马子龙, 等. 焦煤中微细粒嵌布黄铁矿的浮选脱除研究. 中国矿业大学学报, 2019, 48(6):1366
    [20] Li D, Yin W Z, Sun C B, et al. The self-carrier effect of hematite in the flotation. Chin J Eng, 2019, 41(11): 1397

    李东, 印万忠, 孙春宝, 等. 赤铁矿的自载体作用及对浮选的影响. 工程科学学报, 2019, 41(11):1397
    [21] Li L X, Yin W Z, Wang Y B, et al. Effect of siderite on flotation separation of martite and quartz. J Northeast Univ Nat Sci, 2012, 33(3): 431 doi: 10.12068/j.issn.1005-3026.2012.03.031

    李丽匣, 印万忠, 王宇斌, 等. 菱铁矿对假象赤铁矿与石英混合矿浮选的影响. 东北大学学报(自然科学版), 2012, 33(3):431 doi: 10.12068/j.issn.1005-3026.2012.03.031
    [22] Hu W T, Wang H J, Liu X W, et al. Monomer dissociation characteristics and selective recovery technology of micro-fine iron particles. J Univ Sci Technol Beijing, 2013, 35(11): 1424

    胡文韬, 王化军, 刘欣伟, 等. 微细铁颗粒的单体解离特性和选择性回收工艺. 北京科技大学学报, 2013, 35(11):1424
    [23] Li D P, Dai W, Zhao D Y, et al. Grinding process particle size modeling method using robust RVFLN-based ensemble learning. Chin J Eng, 2019, 41(1): 67

    李德鹏, 代伟, 赵大勇, 等. 一种基于鲁棒随机向量函数链接网络的磨矿粒度集成建模方法. 工程科学学报, 2019, 41(1):67
    [24] Li D, Li Z Y, Yin W Z, et al. Effect of particle size on flotation separation of hematite and quartz. Chin J Eng, 2020, 42(5): 586

    李东, 李正要, 印万忠, 等. 粒度大小对赤铁矿和石英浮选分离的影响. 工程科学学报, 2020, 42(5):586
    [25] Li T, Wang S L, Xu F, et al. Study of the basic mechanical properties and degradation mechanism of recycled concrete with tailings before and after carbonation. J Clean Prod, 2020, 259: 120923 doi: 10.1016/j.jclepro.2020.120923
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-28
  • 网络出版日期:  2021-09-13

目录

    /

    返回文章
    返回