• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异相类Fenton催化剂降解废水中抗生素研究进展及发展趋势

邱述兴 韩星 张梅 郭敏

邱述兴, 韩星, 张梅, 郭敏. 异相类Fenton催化剂降解废水中抗生素研究进展及发展趋势[J]. 工程科学学报, 2021, 43(4): 460-474. doi: 10.13374/j.issn2095-9389.2020.10.29.002
引用本文: 邱述兴, 韩星, 张梅, 郭敏. 异相类Fenton催化剂降解废水中抗生素研究进展及发展趋势[J]. 工程科学学报, 2021, 43(4): 460-474. doi: 10.13374/j.issn2095-9389.2020.10.29.002
QIU Shu-xing, HAN Xing, ZHANG Mei, GUO Min. Research progress and development trends in heterogeneous Fenton-like catalysts for degradation of antibiotics in wastewater[J]. Chinese Journal of Engineering, 2021, 43(4): 460-474. doi: 10.13374/j.issn2095-9389.2020.10.29.002
Citation: QIU Shu-xing, HAN Xing, ZHANG Mei, GUO Min. Research progress and development trends in heterogeneous Fenton-like catalysts for degradation of antibiotics in wastewater[J]. Chinese Journal of Engineering, 2021, 43(4): 460-474. doi: 10.13374/j.issn2095-9389.2020.10.29.002

异相类Fenton催化剂降解废水中抗生素研究进展及发展趋势

doi: 10.13374/j.issn2095-9389.2020.10.29.002
基金项目: 国家自然科学基金资助项目(U1810205);国家973资助项目(2014CB643401)
详细信息
    通讯作者:

    E-mail:guomin@ustb.edu.cn

  • 中图分类号: X131.2;O643.3

Research progress and development trends in heterogeneous Fenton-like catalysts for degradation of antibiotics in wastewater

More Information
  • 摘要: 水中抗生素具有成分复杂、毒性高和难于生物降解等特点,成为近些年水处理领域的研究热点。均相Fenton氧化技术(Fe2+/H2O2体系)因其反应快速、简单高效而备受青睐。而异相类Fenton氧化技术采用铁基固体催化剂代替液相Fe2+,能够有效减少含铁污泥的生成,同时拓宽反应的pH值范围,且催化剂可以回收利用,在近些年得到了快速发展,将其应用于抗生素的降解也取得了理想的效果。从异相类Fenton催化原理出发,综述了异相类Fenton催化剂降解抗生素的研究进展。基于异相类Fenton催化剂的核心问题,重点阐述了改善催化性能的方法、措施以及新的观点。针对异相类Fenton技术降解抗生素存在的问题提出了今后的发展方向。
  • 图  1  C@FONC/H2O2体系中四环素降解反应机理示意图[13]

    Note: Fe and Fe indicate that the valence states of Fe are +2 and +3 respectively.

    Figure  1.  Schematic of the reaction mechanisms of TC degradation in the C@FONC/H2O2 system[13]

    图  2  Zn掺杂Fe3O4空心亚微球介晶形成过程示意图及不同条件下对头孢氨苄的降解(插图为外加磁场下回收催化剂)[20]

    Figure  2.  Schematic of the formation process for Zn-doped Fe3O4 hollow submicrosphere mesocrystals and degradation of cephalexin under different conditions (illustration shows the recovery of the catalyst under an external magnetic field)[20]

    图  3  Fe3O4/UV/Ox体系的反应机理[36]

    Figure  3.  Reaction mechanism of the Fe3O4/UV/Ox system[36]

    图  4  以腐泥红土为原料合成金属掺杂铁酸镁的步骤及其异相类Fenton催化反应机理与降解情况示意图

    Figure  4.  Schematic of the process of synthesizing metal-doped magnesium ferrite synthesized from saprolite laterite and heterogeneous Fenton-like catalytic reaction mechanism and degradation

    图  5  (a~c)不同FeCl3·6H2O添加量制备产物的SEM图(插图为粒径分布图)和(d)不同产物的N2吸附−脱附等温线和BET比表面积图[70]

    Figure  5.  (a−c) SEM images of products prepared with different FeCl3·6H2O additions (insets are particle size distribution diagrams) and (d)N2 adsorption−desorption isotherms and BET-specific surface area diagrams of different products[70]

    图  6  HF−(Mg,Ni)(Fe,Al)2O4/H2C2O4/light体系产生羟基自由基示意图及其对不同有机染料和四环素的降解曲线

    Figure  6.  Schematic of hydroxyl radical production in HF−(Mg,Ni)(Fe,Al)2O4/H2C2O4/light system and its degradation curve for different organic dyes and tetracycline

    表  1  掺杂与复合型异相类Fenton催化剂降解水中抗生素研究实例

    Table  1.   Study of degradation of antibiotics in water with doped and composite heterogeneous Fenton-like catalysts

    CatalystAntibioticReaction conditionDegradation effectReusability
    Fe/Si codoped TiO2[18]Metronidazole 0.0006%0.3 g catalyst, 10 mmol·L−1 H2O2, 220 W Xenon lamp,
    pH 7.0, 25 ℃
    93%/50 minFifth cycles /
    80%
    WMoO-x[19]Tetracycline 400 μmol·L−10.8 g·L–1 catalyst, 20 mmol·L−1 H2O2, pH 4.0, 25 ℃91.75%/60 minFifth cycles/
    89.9%
    Zn-doped Fe3O4[20]Cephalexin 10 mg·L−10.10 g catalyst, 0.1 mL H2O2,350 W Xenon lamp90%/180 min,72.3% TOC/180 min
    α-Fe2O3@g-C3N4[10]Tetracycline 40 mg·L−10.5 g·L−1 catalyst, 10 mmol·L−1 H2O2, 100 W LED lamp,
    pH 5.5, 25 ℃
    92%/60 minFifth cycles/
    80%
    FeCu@C[48]Sulfamethazine 20 mg·L−10.25 g·L−1 catalyst, 1.5 mmol·L−1 H2O2, pH 3.0, 25 ℃100% /90 min,72.3% TOC/240 minThird cycle/
    90.1%
    TiO2/Fe3O4[9]Tetracycline 50 mg·L−10.3 g·L−1 catalyst, 10 mmol·L−1 H2O2, 10 W UVC lamp,
    23 ± 1 ℃, pH 7.0
    98%/60 min,64.2% TOC/120 minFifth cycles/
    90%
    rGO-APTMS-FMBO[49]Sulfamethoxazole
    0.039 mmol·L−1
    0.2 g·L−1 catalyst, 2.4 mmol·L−1 CaO2, pH 7.0,22 ± 2 ℃95.4% /120 minFifth cycles/
    75.6%
    Zn-Fe-CNTs[50]Sulfamethoxazole 25 mg·L−10.6 g·L−1 catalyst,400 mL·min−1 O2,pH 1.5, 25 ℃100%/10 min,51.3% TOC/10 min
    NiFe2O4-MWCNT[12]Sulfamethoxazole 5 mg·L−10.025 g·L−1 catalyst,1 µL·mL−1 H2O2,100 W
    Mercury lamp, 25 ℃
    100%/120 min,68% TOC/120 minFifth cycles/
    80%
    C@FONC[13]Tetracycline 0.015%0.5 g·L−1 catalyst, 5.0 mmol·L−1 H2O2, pH 3.097.9%/180 min,52.7% TOC/180 minNinth cycles/
    85.8%
    ZIF-8/MnFe2O4[16]Tetracycline 20 mg·L−10.3 g·L−1 catalyst, 50 mmol·L−1 H2O2, 300 W Xenon lamp92%/90 minFifth cycle/
    82.5%
    nZVI/MIL-101(Cr)[17]Tetracycline 200 mg·L−10.20 g·L−1 catalyst,50 mmol·L−1 H2O2, 25 ℃93%/120 minFifth cycle/
    87.34%
    下载: 导出CSV

    表  2  外场辅助的类型及其优势

    Table  2.   Types and advantages of outfield assistance

    TypesMechanism and advantages
    Light assisted[23-26]1) Photolysis of hydrogen peroxide increases the production of hydroxyl radicals;
    2) Rapid regeneration of ferrous ion from iron complex under illumination;
    3) Semiconductor materials produce photogenerated electron / hole pairs under illumination
    Electrical assisted[27-28]1) Hydrogen peroxide generated in situ by electrolysis;
    2) Regeneration of ferrous ion by cathodic reduction;
    3) Suitable for wide pH range
    Ultrasound assisted[31-32]1) More hydroxyl radicals are produced in solution by acoustic cavitation;
    2) Promote the regeneration of ferrous ions;
    3) Production of hydroxyl radical and hydrogen peroxide by ultrasonic radiation;
    4) Improve interfacial mass transfer
    Microwave assisted[29-30]1) Generate a large number of “hot spots” to accelerate the reduction of iron ions to ferrous ions;
    2) Promote the decomposition of hydrogen peroxide to generate active free radicals;
    3) Improve interfacial mass transfer
    下载: 导出CSV
  • [1] Calvete M J F, Piccirillo G, Vinagreiro C S, et al. Hybrid materials for heterogeneous photocatalytic degradation of antibiotics. Coordin Chem Rev, 2019, 395: 63 doi: 10.1016/j.ccr.2019.05.004
    [2] Brown E D, Wright G D. Antibacterial drug discovery in the resistance era. Nature, 2016, 529(7586): 336 doi: 10.1038/nature17042
    [3] Gensollen T, Iyer S S, Kasper D L, et al. Antibiotic use and its consequences for the normal microbiome. Science, 2016, 352(6285): 539 doi: 10.1126/science.aad9378
    [4] Aydin S, Ince B, Ince O. Assessment of anaerobic bacterial diversity and its effects on anaerobic system stability and the occurrence of antibiotic resistance genes. Bioresour Technol, 2016, 207: 332 doi: 10.1016/j.biortech.2016.01.080
    [5] Ahmed M B, Zhou J L, Ngo H H, et al. Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Scie Total Environ, 2015, 532: 112 doi: 10.1016/j.scitotenv.2015.05.130
    [6] Leng L J, Wei L, Xiong Q, et al. Use of microalgae based technology for the removal of antibiotics from wastewater: a review. Chemosphere, 2020, 238: 124680 doi: 10.1016/j.chemosphere.2019.124680
    [7] Cuerda-Correa E M, Alexandre-Franco M F, Fernández-González C. Advanced oxidation processes for the removal of antibiotics from water: an overview. Water, 2020, 12(1): 102
    [8] Wang J L, Xu L J. Advanced oxidation processes for wastewater treatment: formation of hydroxyl radical and application. Crit Rev Environ Sci Technol, 2012, 42(3): 251 doi: 10.1080/10643389.2010.507698
    [9] Yu X D, Lin X C, Feng W, et al. Effective removal of tetracycline by using bio-templated synthesis of TiO2/Fe3O4 heterojunctions as a UV–fenton catalyst. Catal Lett, 2019, 149(2): 552 doi: 10.1007/s10562-018-2544-8
    [10] Guo T, Wang K, Zhang G K, et al. A novel α-Fe2O3@g-C3N4 catalyst: synthesis derived from Fe-based MOF and its superior photo-Fenton performance. Appl Surf Sci, 2019, 469: 331 doi: 10.1016/j.apsusc.2018.10.183
    [11] Qin Y X, Li G Y, Gao Y P, et al. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: a critical review. Water Res, 2018, 137: 130 doi: 10.1016/j.watres.2018.03.012
    [12] Nawaz M, Shahzad A, Tahir K, et al. Photo-Fenton reaction for the degradation of sulfamethoxazole using a multi-walled carbon nanotube-NiFe2O4 composite. Chem Eng J, 2020, 382: 123053 doi: 10.1016/j.cej.2019.123053
    [13] Zhou J H, Ma F, Guo H J, et al. Activate hydrogen peroxide for efficient tetracycline degradation via a facile assembled carbon-based composite: synergism of powdered activated carbon and ferroferric oxide nanocatalyst. Appl Catal B Environ, 2020, 269: 118784 doi: 10.1016/j.apcatb.2020.118784
    [14] Cheng M, Lai C, Liu Y, et al. Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coord Chem Rev, 2018, 368: 80 doi: 10.1016/j.ccr.2018.04.012
    [15] Zhu G W, Wang S, Yu Z C, et al. Application of Fe-MOFs in advanced oxidation processes. Res Chem Intermed, 2019, 45(7): 3777 doi: 10.1007/s11164-019-03820-5
    [16] Wang Z H, Lai C, Qin L, et al. ZIF-8-modified MnFe2O4 with high crystallinity and superior photo-Fenton catalytic activity by Zn−O−Fe structure for TC degradation. Chem Eng J, 2020, 392: 124851 doi: 10.1016/j.cej.2020.124851
    [17] Hou X H, Shi J D, Wang N N, et al. Removal of antibiotic tetracycline by metal-organic framework MIL-101(Cr) loaded nano zero-valent iron. J Mol Liq, 2020, 313: 113512 doi: 10.1016/j.molliq.2020.113512
    [18] Du W, Xu Q, Jin D Q, et al. Visible-light-induced photo-Fenton process for the facile degradation of metronidazole by Fe/Si codoped TiO2. RSC Adv, 2018, 8(70): 40022 doi: 10.1039/C8RA08114J
    [19] Hu Y, Chen K, Li Y L, et al. Morphology-tunable WMoO nanowire catalysts for the extremely efficient elimination of tetracycline: kinetics, mechanisms and intermediates. Nanoscale, 2019, 11(3): 1047 doi: 10.1039/C8NR08162J
    [20] Nguyen X S, Zhang G K, Yang X F. Mesocrystalline Zn-doped Fe3O4 hollow submicrospheres: Formation mechanism and enhanced photo-Fenton catalytic performance. ACS Appl Mater Interfaces, 2017, 9(10): 8900 doi: 10.1021/acsami.6b16839
    [21] Sharma R, Bansal S, Singhal S. Augmenting the catalytic activity of CoFe2O4 by substituting rare earth cations into the spinel structure. RSC Adv, 2016, 6(75): 71676 doi: 10.1039/C6RA14325C
    [22] Vinosha P A, Xavier B, Krishnan S, et al. Investigation on zinc substituted highly porous improved catalytic activity of NiFe2O4 nanocrystal by co-precipitation method. Mater Res Bull, 2018, 101: 190 doi: 10.1016/j.materresbull.2018.01.026
    [23] Casbeer E, Sharma V K, Li X Z. Synthesis and photocatalytic activity of ferrites under visible light: a review. Sep Purif Technol, 2012, 87: 1 doi: 10.1016/j.seppur.2011.11.034
    [24] Li Y J, Zhang B J, Liu X L, et al. Ferrocene-catalyzed heterogeneous Fenton-like degradation mechanisms and pathways of antibiotics under simulated sunlight: a case study of sulfamethoxazole. J Hazard Mater, 2018, 353: 26 doi: 10.1016/j.jhazmat.2018.02.034
    [25] Xue Z H, Wang T, Chen B D, et al. Degradation of tetracycline with BiFeO3 prepared by a simple hydrothermal method. Materials, 2015, 8(9): 6360 doi: 10.3390/ma8095310
    [26] Zhu G P, Yu X D, Xie F, et al. Ultraviolet light assisted heterogeneous Fenton degradation of tetracycline based on polyhedral Fe3O4 nanoparticles with exposed high-energy {110} facets. Appl Surf Sci, 2019, 485: 496 doi: 10.1016/j.apsusc.2019.04.239
    [27] Rahmatinia Z, Rahmatinia M. Removal of the metronidazole from aqueous solution by heterogeneous electro-Fenton process using nano-Fe3O4. Data Brief, 2018, 19: 2139 doi: 10.1016/j.dib.2018.06.118
    [28] Özcan A, Özcan A A, Demirci Y, et al. Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin. Appl Catal B Environ, 2017, 200: 361 doi: 10.1016/j.apcatb.2016.07.018
    [29] Zhu Y P, Zhu R L, Xi Y F, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl Catal B Environ, 2019, 255: 117739 doi: 10.1016/j.apcatb.2019.05.041
    [30] Qi Y, Mei Y Q, Li J Q, et al. Highly efficient microwave-assisted Fenton degradation of metacycline using pine-needle-like CuCo2O4 nanocatalyst. Chem Eng J, 2019, 373: 1158 doi: 10.1016/j.cej.2019.05.097
    [31] Hou L W, Wang L G, Royer S, et al. Ultrasound-assisted heterogeneous Fenton-like degradation of tetracycline over a magnetite catalyst. J Hazard Mater, 2016, 302: 458 doi: 10.1016/j.jhazmat.2015.09.033
    [32] Ma X Y, Cheng Y Q, Ge Y J, et al. Ultrasound-enhanced nanosized zero-valent copper activation of hydrogen peroxide for the degradation of norfloxacin. Ultrason Sonochem, 2018, 40: 763 doi: 10.1016/j.ultsonch.2017.08.025
    [33] Ding D H, Liu C, Ji Y F, et al. Mechanism insight of degradation of norfloxacin by magnetite nanoparticles activated persulfate: Identification of radicals and degradation pathway. Chem Eng J, 2017, 308: 330 doi: 10.1016/j.cej.2016.09.077
    [34] Pulicharla R, Drouinaud R, Brar S K, et al. Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution. Chemosphere, 2018, 207: 543 doi: 10.1016/j.chemosphere.2018.05.134
    [35] Wang A Q, Chen Z, Zheng Z K, et al. Remarkably enhanced sulfate radical-based photo-Fenton-like degradation of levofloxacin using the reduced mesoporous MnO@MnOx microspheres. Chem Eng J, 2020, 379: 122340 doi: 10.1016/j.cej.2019.122340
    [36] Huang M J, Zhou T, Wu X H, et al. Distinguishing homogeneous-heterogeneous degradation of norfloxacin in a photochemical Fenton-like system (Fe3O4 /UV/oxalate) and the interfacial reaction mechanism. Water Res, 2017, 119: 47 doi: 10.1016/j.watres.2017.03.008
    [37] Wang Y, Liang J B, Liao X D, et al. Photodegradation of sulfadiazine by goethite−oxalate suspension under UV light irradiation. Ind Eng Chem Res, 2010, 49(8): 3527 doi: 10.1021/ie9014974
    [38] Pan Y W, Zhou M H, Wang Q, et al. EDTA, oxalate, and phosphate ions enhanced reactive oxygen species generation and sulfamethazine removal by zero-valent iron. J Hazard Mater, 2020, 391: 122210 doi: 10.1016/j.jhazmat.2020.122210
    [39] Neyens E, Baeyens J. A review of classic Fenton’s peroxidation as an advanced oxidation technique. J Hazard Mater, 2003, 98(1-3): 33 doi: 10.1016/S0304-3894(02)00282-0
    [40] Pliego G, Zazo J A, Garcia-Muñoz P, et al. Trends in the intensification of the Fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol, 2015, 45(24): 2611 doi: 10.1080/10643389.2015.1025646
    [41] Wang N N, Zheng T, Zhang G S, et al. A review on Fenton-like processes for organic wastewater treatment. J Environ Chem Eng, 2016, 4(1): 762 doi: 10.1016/j.jece.2015.12.016
    [42] Jain B, Singh A K, Kim H, et al. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ Chem Lett, 2018, 16(3): 947 doi: 10.1007/s10311-018-0738-3
    [43] Nidheesh P V. Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv, 2015, 5(51): 40552 doi: 10.1039/C5RA02023A
    [44] Munoz M, de Pedro Z M, Casas J A, et al. Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation— —a review. Appl Catal B Environ, 2015, 176-177: 249 doi: 10.1016/j.apcatb.2015.04.003
    [45] Zha S X, Cheng Y, Gao Y, et al. Nanoscale zero-valent iron as a catalyst for heterogeneous Fenton oxidation of amoxicillin. Chem Eng J, 2014, 255: 141 doi: 10.1016/j.cej.2014.06.057
    [46] Gao J S, Wu S C, Han Y L, et al. 3D mesoporous CuFe2O4 as a catalyst for photo-Fenton removal of sulfonamide antibiotics at near neutral pH. J Colloid Interface Sci, 2018, 524: 409 doi: 10.1016/j.jcis.2018.03.112
    [47] Wang G, Zhao D Y, Kou F Y, et al. Removal of norfloxacin by surface Fenton system (MnFe2O4/H2O2): Kinetics, mechanism and degradation pathway. Chem Eng J, 2018, 351: 747 doi: 10.1016/j.cej.2018.06.033
    [48] Tang J T, Wang J L. MOF-derived three-dimensional flower-like FeCu@C composite as an efficient Fenton-like catalyst for sulfamethazine degradation. Chem Eng J, 2019, 375: 122007 doi: 10.1016/j.cej.2019.122007
    [49] Amina, Si X Y, Wu K, et al. Mechanistic insights into the reactive radicals-assisted degradation of sulfamethoxazole via calcium peroxide activation by manganese-incorporated iron oxide–graphene nanocomposite: Formation of radicals and degradation pathway. Chem Eng J, 2020, 384: 123360 doi: 10.1016/j.cej.2019.123360
    [50] Liu Y, Fan Q, Wang J L. Zn-Fe-CNTs catalytic in situ generation of H2O2 for Fenton-like degradation of sulfamethoxazole. J Hazard Mater, 2018, 342: 166 doi: 10.1016/j.jhazmat.2017.08.016
    [51] Gao Y J, Champagne P, Blair D, et al. Activated persulfate by iron-based materials used for refractory organics degradation: a review. Water Sci Technol, 2020, 81(5): 853 doi: 10.2166/wst.2020.190
    [52] Liang C J, Guo Y Y. Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environ Sci Technol, 2010, 44(21): 8203 doi: 10.1021/es903411a
    [53] Liu Y, Guo H G, Zhang Y L, et al. Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin. Chem Eng J, 2018, 343: 128 doi: 10.1016/j.cej.2018.02.125
    [54] Xiao S, Cheng M, Zhong H, et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: a review. Chem Eng J, 2020, 384: 123265 doi: 10.1016/j.cej.2019.123265
    [55] Wu D L, Liu Y X, Zhang Z Y, et al. Pyrite-enhanced degradation of chloramphenicol by low concentrations of H2O2. Water Sci Technol, 2015, 72(2): 180 doi: 10.2166/wst.2015.202
    [56] Munoz M, Conde J, de Pedro Z M, et al. Antibiotics abatement in synthetic and real aqueous matrices by H2O2/natural magnetite. Catal Today, 2018, 313: 142 doi: 10.1016/j.cattod.2017.10.032
    [57] Sun F W, Liu H B, Wang H L, et al. A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9. Sci Total Environ, 2020, 698: 134293 doi: 10.1016/j.scitotenv.2019.134293
    [58] Kamagate M, Assadi A A, Kone T, et al. Use of laterite as a sustainable catalyst for removal of fluoroquinolone antibiotics from contaminated water. Chemosphere, 2018, 195: 847 doi: 10.1016/j.chemosphere.2017.12.165
    [59] Ayala-Durán S C, Hammer P, Nogueira R F P. Surface composition and catalytic activity of an iron mining residue for simultaneous degradation of sulfonamide antibiotics. Environ Sci Pollut Res, 2020, 27(2): 1710 doi: 10.1007/s11356-019-06662-1
    [60] Grössinger R, Duong G V, Sato-Turtelli R. The physics of magnetoelectric composites. J Magn Magn Mater, 2008, 320(14): 1972 doi: 10.1016/j.jmmm.2008.02.031
    [61] Sharma R, Kumar V, Bansal S, et al. Assortment of magnetic nanospinels for activation of distinct inorganic oxidants in photo-Fenton’s process. J Mol Catal A Chem, 2015, 402: 53 doi: 10.1016/j.molcata.2015.03.009
    [62] Amiri M, Eskandari K, Salavati-Niasari M. Magnetically retrievable ferrite nanoparticles in the catalysis application. Adv Colloid Interface Sci, 2019, 271: 101982 doi: 10.1016/j.cis.2019.07.003
    [63] Chaibakhsh N, Moradi-Shoeili Z. Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): a review of synthesis, mechanism and potential applications. Mater Sci Eng C, 2019, 99: 1424 doi: 10.1016/j.msec.2019.02.086
    [64] 韩星, 闫治开, 陈婷, 等. 从腐泥土型红土镍矿制备共掺杂MgFe2O4物相转化规律及催化性能. 工程科学学报, 2019, 41(5):600

    Han X, Yan Z K, Chen T, et al. Phase transformation and catalytic performance of metal-doped MgFe2O4 prepared from saprolite laterite. Chin J Eng, 2019, 41(5): 600
    [65] 刘雅贤, 陈婷, 韩星, 等. Cu掺杂对硫化镍精矿制备高效异相类Fenton催化剂(Ni, Mg, Cu)Fe2O4的影响. 工程科学学报, https://doi.org/10.13374/j.issn2095-9389.2020.06.18.002

    Liu Y X, Chen T, Han X, et al. Copper doping effect on the preparation of efficient heterogeneous Fenton-like catalyst (Ni, Mg, Cu)Fe2O4 from nickel sulfide concentrate. Chin J Eng, https://doi.org/10.13374/j.issn2095-9389.2020.06.18.002
    [66] Magnago L B, Rocha A K S, Pegoretti V C B, et al. NiFe2O4 synthesized from nickel recycled of spent Ni-MH batteries and their applications as a catalyst in a photo-Fenton process and as an electrochemical pseudocapacitor. Ionics, 2019, 25(5): 2361 doi: 10.1007/s11581-018-2623-2
    [67] Cao Z B, Zhang J, Zhou J Z, et al. Electroplating sludge derived zinc-ferrite catalyst for the efficient photo-Fenton degradation of dye. J Environ Manage, 2017, 193: 146 doi: 10.1016/j.jenvman.2016.11.039
    [68] Li Y, Chen D, Fan S S, et al. Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater. J Taiwan Inst Chem Eng, 2019, 96: 185 doi: 10.1016/j.jtice.2018.11.006
    [69] Han X, Chen T, Liu Y X, et al. Novel efficient heterogeneous visible light assisted Fenton-like catalyst (Ni, Mg, Cu)Fe2O4 from nickel sulfide concentrate. Mater Lett, 2019, 253: 1 doi: 10.1016/j.matlet.2019.06.014
    [70] Han X, Liu S Y, Huo X T, et al. Facile and large-scale fabrication of (Mg, Ni)(Fe, Al)2O4 heterogeneous photo-Fenton-like catalyst from saprolite laterite ore for effective removal of organic contaminants. J Hazard Mater, 2020, 392: 122295 doi: 10.1016/j.jhazmat.2020.122295
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  42
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 网络出版日期:  2021-03-30
  • 刊出日期:  2021-03-31

目录

    /

    返回文章
    返回