• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维ZnO/CdS/NiFe层状双金属氢氧化物光电催化氧化甲烷

刘佳 张英华 黄志安 白智明 高玉坤

刘佳, 张英华, 黄志安, 白智明, 高玉坤. 三维ZnO/CdS/NiFe层状双金属氢氧化物光电催化氧化甲烷[J]. 工程科学学报, 2021, 43(8): 1064-1072. doi: 10.13374/j.issn2095-9389.2020.11.02.001
引用本文: 刘佳, 张英华, 黄志安, 白智明, 高玉坤. 三维ZnO/CdS/NiFe层状双金属氢氧化物光电催化氧化甲烷[J]. 工程科学学报, 2021, 43(8): 1064-1072. doi: 10.13374/j.issn2095-9389.2020.11.02.001
LIU Jia, ZHANG Ying-hua, HUANG Zhi-an, BAI Zhi-ming, GAO Yu-kun. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide[J]. Chinese Journal of Engineering, 2021, 43(8): 1064-1072. doi: 10.13374/j.issn2095-9389.2020.11.02.001
Citation: LIU Jia, ZHANG Ying-hua, HUANG Zhi-an, BAI Zhi-ming, GAO Yu-kun. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide[J]. Chinese Journal of Engineering, 2021, 43(8): 1064-1072. doi: 10.13374/j.issn2095-9389.2020.11.02.001

三维ZnO/CdS/NiFe层状双金属氢氧化物光电催化氧化甲烷

doi: 10.13374/j.issn2095-9389.2020.11.02.001
基金项目: 国家重点研发计划重点专项资助项目(2018YFC0810606-02);中央高校基本科研业务项目基金资助项目(FRF-TP-20-005A1)
详细信息
    通讯作者:

    E-mail:zhangyinghuaustb@sina.com

  • 中图分类号: TQ174

Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide

More Information
  • 摘要: 将甲烷以低能耗的方式直接转化为甲醇等高附加值的化学品一直是可持续化工产业的重要目标和重大挑战。本文制备了三维(3D)ZnO/CdS/NiFe层状双金属氢氧化物(LDH)核/壳/分层纳米线阵列(NWAs)结构材料并将其用于室温、模拟阳光照射下甲烷的光电催化氧化。结果表明3D ZnO/CdS/NiFe-LDH具有优异的光电化学性能及催化活性,甲烷气氛下的光电流密度达到了6.57 mA·cm−2(0.9 V vs RHE),其催化甲烷生成甲醇及甲酸产量分别是纯ZnO的5.0和6.3倍,两种主要产物的总法拉第效率达到54.87%。CdS 纳米颗粒(NPs)的沉积显著提升了复合物对可见光的吸收,促进了光生载流子的分离。而具有三维多孔结构的NiFe-LDH纳米片的引入改善了甲烷氧化表面反应动力学,起到了优异的助催化作用;并且有效抑制了O2•-的产生,防止O2•-进一步将甲醇及甲酸氧化为CO2,提高了甲醇及甲酸的选择性。最后,提出了三维ZnO/CdS/NiFe-LDH复合材料光电催化甲烷转化为甲醇及甲酸的机理,为甲烷低能耗转化为高价值化学品提供了新思路。

     

  • 图  1  ZnO/CdS/NiFe-LDH的制备

    Figure  1.  Synthetic procedure of ZnO/CdS/NiFe-LDH.

    图  2  形貌及元素组成。(a)ZnO的扫描电镜图;(b)ZnO/CdS的扫描电镜图;ZnO/CdS/NiFe-LDH的扫描电镜图(c)、X射线能谱图(d)、透射电镜图(e)及高分辨透射电镜图(f)

    Figure  2.  Morphology and element composition: (a) SEM images of ZnO; (b) SEM images of ZnO/CdS; SEM images (c), EDS spectra (d), TEM image (e),and HR-TEM image (f) of the ZnO/CdS/NiFe-LDH sample

    图  3  ZnO、ZnO/CdS、ZnO/CdS/NiFe-LDH的X射线衍射图

    Figure  3.  XRD patterns of ZnO, ZnO/CdS, and ZnO/CdS/NiFe-LDH photoanodes

    图  4  ZnO、ZnO/CdS、ZnO/CdS/NiFe-LDH的紫外‒可见光吸收谱

    Figure  4.  UV–vis absorption spectra of ZnO, ZnO/CdS, and ZnO/CdS/NiFe-LDH

    图  5  光阳极的线性伏安扫描曲线。(a)ZnO;(b)ZnO/CdS;(c)ZnO/CdS/NiFe-LDH;(d)在持续通入甲烷且光照条件下对比图

    Figure  5.  LSV: (a) ZnO; (b) ZnO/CdS; (c)ZnO/CdS/NiFe-LDH photoanodes; (d) comparison in the presence of CH4 under illumination

    图  6  ZnO、ZnO/CdS、ZnO/CdS/NiFe-LDH光阳极在持续通入甲烷下的(a)1.1 V(vs RHE)下的计时电流(Jt)曲线;(b)光照条件下与黑暗条件下的电化学阻抗谱;(c)1.1 V(vs RHE)下的电流‒时间稳定性曲线

    Figure  6.  (a) Chronoamperometric Jt curves collected at 1.1 V (vs RHE) under chopped illumination conditions; (b) EIS plots under dark and light illumination; (c) current–time curves for stability measurement collected at 1.1 V (vs RHE) of ZnO, ZnO/CdS, ZnO/CdS/NiFe-LDH photoanodes saturated with methane

    图  7  外加电压为1.1 V(vs RHE),光照强度为AM 1.5G、100 mA·cm−2,电解液为0.5 mol·L−1 Na2SO4水溶液条件下ZnO、ZnO/CdS、ZnO/CdS/NiFe-LDH光电催化氧化甲烷转化为甲醇(a)甲酸(b)产量随时间变化曲线图以及2.5 h内生成甲醇及甲酸的法拉第效率(c)

    Figure  7.  Yields of CH3OH (a) and HCOOH (b) in the photoelectrocatalytic oxidation of CH4 with ZnO, ZnO/CdS, and ZnO/CdS/NiFe-LDH catalysts, with a potential of 1.1 V (vs RHE) under simulated sunlight illumination (AM 1.5G, 100 mA·cm−2), and the electrolyte is 0.5 mol·L-1 Na2SO4 aqueous solution; (c) Faradaic efficiencies of CH3OH and HCOOH for ZnO, ZnO/CdS, and ZnO/CdS/NiFe-LDH for a 2.5-h operation

    图  8  ZnO/CdS/NiFe-LDH光电催化氧化甲烷过程电荷转移原理图

    Figure  8.  Schematic diagram of the charge transfer in ZnO/CdS/NiFe-LDH for photoelectrocatalytic oxidation of methane

  • [1] Xu S, Gou Q Y, Hao F, et al. Shale pore structure characteristics of the high and low productivity wells, Jiaoshiba shale gas field, Sichuan Basin, China: Dominated by lithofacies or preservation condition? Mar Petroleum Geol, 2020, 114: 104211 doi: 10.1016/j.marpetgeo.2019.104211
    [2] Zeng S, Gu J F, Yang S Y, et al. Comparison of techno-economic performance and environmental impacts between shale gas and coal-based synthetic natural gas (SNG) in China. J Clean Prod, 2019, 215: 544 doi: 10.1016/j.jclepro.2019.01.101
    [3] Zhang Q J, He D H, Zhu Q M. Direct partial oxidation of methane to methanol: Reaction zones and role of catalyst location. J Nat Gas Chem, 2008, 17(1): 24 doi: 10.1016/S1003-9953(08)60021-3
    [4] Alvarez-Galvan M C, Mota N, Ojeda M, et al. Direct methane conversion routes to chemicals and fuels. Catal Today, 2011, 171(1): 15 doi: 10.1016/j.cattod.2011.02.028
    [5] Peerakiatkhajohn P, Yun J H, Chen H, et al. Stable hematite nanosheet photoanodes for enhanced photoelectrochemical water splitting. Adv Mater, 2016, 28(30): 6405 doi: 10.1002/adma.201601525
    [6] Jiang C, Moniz S J A, Wang A, et al. Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev, 2017, 46(15): 4645 doi: 10.1039/C6CS00306K
    [7] Liu H M, Wu P, Li H T, et al. Unravelling the effects of layered supports on Ru nanoparticles for enhancing N2 reduction in photocatalytic ammonia synthesis. Appl Catal B:Environ, 2019, 259: 118026 doi: 10.1016/j.apcatb.2019.118026
    [8] Ithisuphalap K, Zhang H G, Guo L, et al. Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis. Small Methods, 2019, 3(6): 1800352 doi: 10.1002/smtd.201800352
    [9] AlOtaibi B, Kong X, Vanka S, et al. Photochemical carbon dioxide reduction on Mg-doped Ga(in)N nanowire arrays under visible light irradiation. ACS Energy Lett, 2016, 1(1): 246 doi: 10.1021/acsenergylett.6b00119
    [10] Sagara N, Kamimura S, Tsubota T, et al. Photoelectrochemical CO2 reduction by a p-type boron-doped g-C3N4 electrode under visible light. Appl Catal B:Environ, 2016, 192: 193 doi: 10.1016/j.apcatb.2016.03.055
    [11] Hameed A, Ismail I M I, Aslam M, et al. Photocatalytic conversion of methane into methanol: Performance of silver impregnated WO3. Appl Catal A:Gen, 2014, 470: 327 doi: 10.1016/j.apcata.2013.10.045
    [12] Gondal M A, Hameed A, Suwaiyan A. Photo-catalytic conversion of methane into methanol using visible laser. Appl Catal A:Gen, 2003, 243(1): 165 doi: 10.1016/S0926-860X(02)00562-8
    [13] Villa K, Murcia-López S, Morante J R, et al. An insight on the role of La in mesoporous WO3 for the photocatalytic conversion of methane into methanol. Appl Catal B:Environ, 2016, 187: 30 doi: 10.1016/j.apcatb.2016.01.032
    [14] Chen X, Li Y, Pan X, et al. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat Commun, 2016, 7: 12273 doi: 10.1038/ncomms12273
    [15] Li W, He D, Hu G X, et al. Selective CO production by photoelectrochemical methane oxidation on TiO2. ACS Central Sci, 2018, 4(5): 631 doi: 10.1021/acscentsci.8b00130
    [16] Amano F, Shintani A, Tsurui K, et al. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett, 2019, 4(2): 502 doi: 10.1021/acsenergylett.8b02436
    [17] Li R, Xia Y, Xu L, et al. Study of rapidly synthesis of ZnO nanorods by microwave hydrothermal method and photocatalytic performance. Chin J Eng, 2020, 42(1): 78

    李蕊, 夏仡, 许磊, 等. 微波水热法快速合成氧化锌纳米棒及其光催化性能. 工程科学学报, 2020, 42(1):78
    [18] Bai X J, Wang L, Zong R L, et al. Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir, 2013, 29(9): 3097 doi: 10.1021/la4001768
    [19] Bai Z M, Zhang Y H. A Cu2O/Cu2S‒ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting. J Alloys Compd, 2017, 698: 133 doi: 10.1016/j.jallcom.2016.12.261
    [20] Pascariu P, Homocianu M, Cojocaru C, et al. Preparation of La doped ZnO ceramic nanostructures by electrospinning-calcination method: Effect of La3+ doping on optical and photocatalytic properties. Appl Surf Sci, 2019, 476: 16 doi: 10.1016/j.apsusc.2019.01.077
    [21] Sowik J, Miodyńska M, Bajorowicz B, et al. Optical and photocatalytic properties of rare earth metal-modified ZnO quantum dots. Appl Surf Sci, 2019, 464: 651 doi: 10.1016/j.apsusc.2018.09.104
    [22] Bai Z M, Yan X Q, Li Y, et al. 3D-branched ZnO/CdS nanowire arrays for solar water splitting and the service safety research. Adv Energy Mater, 2016, 6(3): 1501459 doi: 10.1002/aenm.201501459
    [23] Luo J, Im J H, Mayer M T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345(6204): 1593 doi: 10.1126/science.1258307
    [24] Hou Y, Wen Z H, Cui S M, et al. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett, 2016, 16(4): 2268 doi: 10.1021/acs.nanolett.5b04496
    [25] Liu J, Zhang Y H, Huang Z A, et al. Photoelectrocatalytic oxidation of methane into methanol over ZnO nanowire arrays decorated with plasmonic Au nanoparticles. Nano, 2019, 14(2): 1950017 doi: 10.1142/S1793292019500176
    [26] Tak Y, Hong S J, Lee J S, et al. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J Mater Chem, 2009, 19(33): 5945 doi: 10.1039/b904993b
    [27] Weng B, Yang M Q, Zhang N, et al. Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide. J Mater Chem A, 2014, 2(24): 9380 doi: 10.1039/c4ta01077a
    [28] Daems N, Sheng X, Vankelecom I F J, et al. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J Mater Chem A, 2014, 2(12): 4085 doi: 10.1039/C3TA14043A
    [29] Lu Z Y, Xu W W, Zhu W, et al. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem Commun, 2014, 50(49): 6479 doi: 10.1039/C4CC01625D
    [30] Liang H F, Meng F, Cabán-Acevedo M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett, 2015, 15(2): 1421 doi: 10.1021/nl504872s
    [31] Xie J J, Jin R X, Li A, et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat Catal, 2018, 1(11): 889 doi: 10.1038/s41929-018-0170-x
  • 加载中
图(8)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  55
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-02
  • 网络出版日期:  2021-03-13
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回