• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁尾矿两步法制备多级孔ZSM-5分子筛

张鹏 李素芹 郭鹏辉 赵鑫 赵泽坤

张鹏, 李素芹, 郭鹏辉, 赵鑫, 赵泽坤. 铁尾矿两步法制备多级孔ZSM-5分子筛[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.11.05.002
引用本文: 张鹏, 李素芹, 郭鹏辉, 赵鑫, 赵泽坤. 铁尾矿两步法制备多级孔ZSM-5分子筛[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.11.05.002
ZHANG Peng, LI Su-qin, GUO Peng-hui, ZHAO Xin, ZHAO Ze-kun. Synthesis of a hierarchical ZSM-5 zeolite from iron-ore tailings by a two-step method[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.11.05.002
Citation: ZHANG Peng, LI Su-qin, GUO Peng-hui, ZHAO Xin, ZHAO Ze-kun. Synthesis of a hierarchical ZSM-5 zeolite from iron-ore tailings by a two-step method[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.11.05.002

铁尾矿两步法制备多级孔ZSM-5分子筛

doi: 10.13374/j.issn2095-9389.2020.11.05.002
基金项目: 国家自然科学基金资助项目(51874039)
详细信息
    通讯作者:

    E-mail:lisuqin@metall.ustb.edu.cn

  • 中图分类号: TQ17

Synthesis of a hierarchical ZSM-5 zeolite from iron-ore tailings by a two-step method

More Information
  • 摘要: 以铁尾矿为原料替代纯化学试剂,采用两步法制备含有介孔–微孔复合孔的多级孔ZSM-5分子筛。首先在介孔模板剂(CTAB)作用下合成介孔分子筛(MCM-41),然后通过固相转换法将MCM-41晶化转变为多级孔ZSM-5分子筛。采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和氮气吸附脱附测试(BET)等技术对样品进行表征。实验结果表明,由于体系中没有液态水相参与,成功避免了CTAB与微孔结构导向剂(TPABr)在水溶液中相互竞争,从而得到高结晶度的多级孔ZSM-5分子筛。因此,本文为铁尾矿制备多级孔ZSM-5提供了一种全新方法。

     

  • 图  1  不同Na2CO3·10H2O/SiO2摩尔比HZSM-5的XRD图谱(a)和不同碱源合成HZSM-5的XRD图谱(b)

    Figure  1.  XRD patterns of HZSM-5 with different Na2CO3·10H2O/SiO2 molar ratios (a) and XRD patterns of HZSM-5 with different alkali (b)

    图  2  不同TPABr/SiO2摩尔比合成HZSM-5的XRD图谱

    Figure  2.  XRD patterns of HZSM-5 with different TPABr/SiO2 molar ratios

    图  3  不同晶化时间HZSM-5的XRD图谱。(a)小角;(b)广角

    Figure  3.  XRD patterns of the HZSM-5 synthesized at different crystallization time: (a) small angle XRD; (b) wide angle XRD

    图  4  不同晶化时间HZSM-5的SEM和TEM图

    Figure  4.  SEM and transmission electron microscopy images of HZSM-5 synthesized at different crystallization times

    图  5  HZSM-5的氮气吸附–脱附曲线(a)及BJH孔径分布(b)

    Figure  5.  Nitrogen adsorption–desorption isotherms (a) and the BJH adsorption pore distributions (b) of HZSM-5

    表  1  IOT化学成分(质量分数)

    Table  1.   Chemical composition of an iron-ore tailing %

    SiO2Fe2O3CaOMgOAl2O3K2ONa2OSO3P2O5Cr2O3
    68.647.673.412.2613.143.640.740.360.160.14
    下载: 导出CSV

    表  2  HZSM-5的物化性质

    Table  2.   Physicochemical properties of the HZSM-5

    SampleBET surface area/
    (m2·g−1)
    Micropore surface area/
    (m2·g−1)
    External surface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Average pore width/
    nm
    HZSM-5-0740.920.6893.72
    HZSM-5-6690.280.6423.49
    HZSM-5-12327.01191.25135.760.1972.41
    HZSM-5-18336.51220.03116.480.2042.32
    下载: 导出CSV
  • [1] Yan Q P. Research on development and utilization of iron ore tailings slag powder in my country. Iron Steel Scrap China, 2014(3): 33

    闫启平. 我国铁矿尾矿渣粉开发利用之研究. 中国废钢铁, 2014(3):33
    [2] Osinubi K J, Yohanna P, Eberemu A O. Cement modification of tropical black clay using iron ore tailings as admixture. Transp Geotech, 2015, 5: 35 doi: 10.1016/j.trgeo.2015.10.001
    [3] McDonald J E D, Roache S C, Kawatra S K. Repurposing mine tailings: Cold bonding of siliceous iron ore tailings. Miner Metall Process, 2016, 33(1): 47
    [4] Sirkeci A A, Gül A, Bulut G, et al. Recovery of Co, Ni, and Cu from the tailings of divrigi iron ore concentrator. Miner Process Extr Metall Rev, 2006, 27(2): 131 doi: 10.1080/08827500600563343
    [5] Wang C L, Ni W, Zhang S Q, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Constr Build Mater, 2016, 104: 109 doi: 10.1016/j.conbuildmat.2015.12.041
    [6] Jin Y Y, Sun Q, Qi G D, et al. Solvent-free synthesis of silicoaluminophosphate zeolites. Angew Chem Int Ed, 2013, 52(35): 9172 doi: 10.1002/anie.201302672
    [7] Zhang P, Li S Q, Guo P H, et al. Synthesis of ZSM-5 microspheres made of nanocrystals from iron ore tailings by the solid-phase conversion method. Langmuir, 2020, 36(22): 6160 doi: 10.1021/acs.langmuir.0c00570
    [8] Yang G, Deng Y X, Ding H, et al. A facile approach to synthesize MCM-41 mesoporous materials from iron ore tailing: Influence of the synthesis conditions on the structural properties. Appl Clay Sci, 2015, 111: 61 doi: 10.1016/j.clay.2015.04.005
    [9] Liu X F, Zeng S J, Wang R W, et al. Sustainable synthesis of hierarchically porous silicalite-1 zeolite by steam-assisted crystallization of solid raw materials without secondary templates. Chem Res Chin Univ, 2018, 34(3): 350 doi: 10.1007/s40242-018-7400-2
    [10] Guo X, Lin S Y, Qin K, et al. Controllable detemplation of nanozeolites and research of molecular diffusing limitation. Chem J Chin Univ, 2015, 36(4): 713

    郭肖, 林少颖, 秦恺, 等. 纳米沸石的模板可控去除及分子扩散限制. 高等学校化学学报, 2015, 36(4):713
    [11] Vyazovkin S. Kinetic concepts of thermally stimulated reactions in solids: A view from a historical perspective. Int Rev Phys Chem, 2000, 19(1): 45 doi: 10.1080/014423500229855
    [12] Mianowski A, Bigda R. The Kissinger law and isokinetic effect: Part II. Experimental analysis. J Therm Anal Calorim, 2004, 75(1): 355 doi: 10.1023/B:JTAN.0000017356.72106.d9
    [13] Zhu Q, Kondo J N, Setoyama T, et al. Activation of hydrocarbons on acidic zeolites: Superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts. Chem Commun (Camb), 2008(41): 5164 doi: 10.1039/b809718f
    [14] Ding J, Fan S Y, Chen P J, et al. Vapor-phase transport synthesis of microfibrous-structured SS-fiber@ZSM-5 catalyst with improved selectivity and stability for methanol-to-propylene. Catal Sci Technol, 2017, 7(10): 2087 doi: 10.1039/C7CY00283A
    [15] Wodarz S, Slaby N A, Zimmermann M C, et al. Shaped hierarchical H-ZSM-5 catalysts for the conversion of dimethyl ether to gasoline. Ind Eng Chem Res, 2020, 59(40): 17689 doi: 10.1021/acs.iecr.9b06256
    [16] Jiang X, Nie X W, Guo X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev, 2020, 120(15): 7984 doi: 10.1021/acs.chemrev.9b00723
    [17] Wu Z J, Zhao K Q, Zhang Y, et al. Synthesis and consequence of aggregated nanosized ZSM-5 zeolite crystals for methanol to propylene reaction. Ind Eng Chem Res, 2019, 58(25): 10737 doi: 10.1021/acs.iecr.9b00502
    [18] Zhang K, Fernandez S, O’Brien J T, et al. Organotemplate-free synthesis of hierarchical beta zeolites. Catal Today, 2018, 316: 26 doi: 10.1016/j.cattod.2017.11.033
    [19] Emdadi L, Tran D T, Schulman E, et al. Synthesis of hierarchical lamellar MFI zeolites with sequential intergrowth influenced by synthetic gel composition. Microporous Mesoporous Mater, 2019, 275: 31 doi: 10.1016/j.micromeso.2018.08.007
    [20] Zhang Q, Hu S, Zhang L L, et al. Facile fabrication of mesopore-containing ZSM-5 zeolite from spent zeolite catalyst for methanol to propylene reaction. Green Chem, 2014, 16(1): 77 doi: 10.1039/C3GC41327F
    [21] Ge T, Hua Z, He X, et al. On the mesoporogen-free synthesis of single-crystalline hierarchically structured ZSM-5 zeolites in a quasi-solid-state system. Chemistry, 2016, 22(23): 7895 doi: 10.1002/chem.201504813
    [22] Li C L, Wang Y Q, Shi B F, et al. Synthesis of hierarchical MFI zeolite microspheres with stacking nanocrystals. Microporous Mesoporous Mater, 2009, 117(1-2): 104 doi: 10.1016/j.micromeso.2008.06.017
    [23] Feng A H, Yu Y, Mi L, et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent. Microporous Mesoporous Mater, 2019, 280: 211 doi: 10.1016/j.micromeso.2019.01.039
    [24] Yue M B, Sun L B, Zhuang T T, et al. Directly transforming as-synthesized MCM-41 to mesoporous MFI zeolite. J Mater Chem, 2008, 18(17): 2044 doi: 10.1039/b717634a
    [25] Chen H R, Zhou X X, Shi J L. Research progress on hierarchically porous zeolites: Structural control, synthesis and catalytic applications. J Inorg Mater, 2018, 33(2): 113 doi: 10.15541/jim20170255

    陈航榕, 周晓霞, 施剑林. 多级孔沸石的孔结构调控合成及其催化应用研究进展. 无机材料学报, 2018, 33(2):113 doi: 10.15541/jim20170255
    [26] Zhou J, Hua Z L, Liu Z C, et al. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catal, 2011, 1(4): 287 doi: 10.1021/cs1000976
    [27] Xue T, Li S S, Wu H H, et al. Eco-friendly and cost-effective synthesis of ZSM-5 aggregates with hierarchical porosity. Ind Eng Chem Res, 2017, 56(46): 13535 doi: 10.1021/acs.iecr.7b02551
    [28] Farinmade A, Ajumobi O, Yu L, et al. A one-step facile encapsulation of zeolite microcrystallites in ordered mesoporous microspheres. Ind Eng Chem Res, 2020, 59(31): 13923 doi: 10.1021/acs.iecr.0c02054
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  65
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-05
  • 网络出版日期:  2021-01-20

目录

    /

    返回文章
    返回