• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁记忆检测的桥钢箱梁翼缘损伤状态力磁关系

苏三庆 秦彦龙 王威 左付亮 邓瑞泽 刘馨为

苏三庆, 秦彦龙, 王威, 左付亮, 邓瑞泽, 刘馨为. 基于磁记忆检测的桥钢箱梁翼缘损伤状态力磁关系[J]. 工程科学学报, 2022, 44(5): 900-910. doi: 10.13374/j.issn2095-9389.2020.11.10.00214
引用本文: 苏三庆, 秦彦龙, 王威, 左付亮, 邓瑞泽, 刘馨为. 基于磁记忆检测的桥钢箱梁翼缘损伤状态力磁关系[J]. 工程科学学报, 2022, 44(5): 900-910. doi: 10.13374/j.issn2095-9389.2020.11.10.00214
SU San-qing, QIN Yan-long, WANG Wei, ZUO Fu-liang, DENG Rui-ze, LIU Xin-wei. Stress‒magnetization of the state of flange damage to a bridge steel box beam based on magnetic memory detection[J]. Chinese Journal of Engineering, 2022, 44(5): 900-910. doi: 10.13374/j.issn2095-9389.2020.11.10.00214
Citation: SU San-qing, QIN Yan-long, WANG Wei, ZUO Fu-liang, DENG Rui-ze, LIU Xin-wei. Stress‒magnetization of the state of flange damage to a bridge steel box beam based on magnetic memory detection[J]. Chinese Journal of Engineering, 2022, 44(5): 900-910. doi: 10.13374/j.issn2095-9389.2020.11.10.00214

基于磁记忆检测的桥钢箱梁翼缘损伤状态力磁关系

doi: 10.13374/j.issn2095-9389.2020.11.10.00214
基金项目: 国家自然科学基金资助项目(51878548);陕西省自然科学基础研究计划资助项目(2018JZ5013)
详细信息
    通讯作者:

    E-mail: sussqx@xauat.edu.cn

  • 中图分类号: TG115.28;TU391

Stress‒magnetization of the state of flange damage to a bridge steel box beam based on magnetic memory detection

More Information
  • 摘要: 金属磁记忆检测技术由于其能够快速便捷的对铁磁性构件的损伤进行识别,且被认为具有识别隐性损伤的能力,而被广泛研究。为推进金属磁记忆检测技术在桥钢箱梁损伤检测方面的应用,对桥钢箱梁进行了静力受弯试验,提取其变形最严重的上翼缘磁信号分布,建立了损伤区域力与磁信号和磁信号梯度的关系曲线,并提出用磁场梯度指数来表征钢梁的受力和损伤状态。结果表明:上翼缘磁信号曲线与应力变化形态正好相反,磁信号曲线在进入塑性后发生反转变为负值,且随应力变化的速度增快,可以判断构件进入塑性状态,即将发生损伤;磁场梯度曲线在损伤最严重的区域出现最大值,且随着荷载的增大,磁梯度最大值点不断向钢梁中间移动,由此可以进行破坏状态的预警;磁场梯度与应力关系曲线可将构件整个受力过程明显的区分为初始、屈服、塑性、损伤4个状态;可以用磁场梯度指数来进行构件受力状态与损伤状态的表征。该研究可为金属磁记忆检测技术在桥钢箱梁损伤状态的定量评估和预警方面的应用提供依据和参考。

     

  • 图  1  试件三维图(单位:mm)

    Figure  1.  Three-dimensional model of specimen (unit: mm)

    图  2  试件横截面图(单位:mm)

    Figure  2.  Cross section of specimen (unit: mm)

    图  3  试件加载示意图(单位:mm)

    Figure  3.  Specimen loading mode (unit: mm)

    图  4  上翼缘检测线布置示意图 (单位:mm)

    Figure  4.  Upper flange detection line layout (unit: mm)

    图  5  试件本构模型曲线

    Figure  5.  Constitutive model curve of the specimen

    图  6  试件最终破坏形态

    Figure  6.  Final failure pattern of the specimen

    图  7  1800 mm钢梁荷载位移曲线

    Figure  7.  Load displacement curve of the 1800 mm steel beam

    图  8  钢梁上翼缘初始磁信号变化曲线。(a)1800 mm钢梁;(b)1500 mm钢梁

    Figure  8.  Curves of the initial magnetic signal of the upper flange of a steel beams: (a) 1800 mm steel beam; (b) 1500 mm steel beam

    图  9  1800 mm钢梁上翼缘加载中磁信号变化曲线。(a)弹性阶段;(b)塑性阶段

    Figure  9.  Magnetic signal change curves during flange loading of the 1800 mm steel beam: (a) elastic stage; (b) plastic stage

    图  10  1500 mm钢梁上翼缘加载中磁信号变化曲线。(a)弹性阶段;(b)塑性阶段

    Figure  10.  Magnetic signal change curve during flange loading of the 1500 mm steel beam: (a) elastic stage; (b) plastic stage

    图  11  1800 mm钢梁上翼缘磁信号梯度变化曲线。(a)弹性阶段;(b)塑性阶段

    Figure  11.  Magnetic signal gradient curves of the upper flange of the 1800 mm steel beam: (a) elastic stage; (b) plastic stage

    图  12  1500 mm钢梁上翼缘磁信号梯度变化曲线。(a)弹性阶段;(b)塑性阶段

    Figure  12.  Magnetic signal gradient curves of the upper flange of the 1500 mm steel beam: (a) elastic stage; (b) plastic stage

    图  13  有限元计算模型

    Figure  13.  Finite element model

    图  14  有限元计算和试验的荷载位移曲线

    Figure  14.  Finite element calculation and test load displacement curves

    图  15  极限状态钢梁应力云图。(a)正应力云图;(b)切应力云图

    Figure  15.  Stress nephogram of a steel beam in the ultimate state: (a) nephogram of normal stress; (b) nephogram of shear stress

    图  16  试件极限状态等效应力云图

    Figure  16.  Equivalent stress nephogram of specimen ultimate state

    图  17  有限元计算的1800 mm梁上翼缘应力分布

    Figure  17.  Stress distribution on the upper flange of the 1800 mm beam calculated using the finite element method

    图  18  钢梁纯弯段力磁分布曲线。(a)1800 mm钢梁;(b)1500 mm钢梁

    Figure  18.  Magnetic distribution curve of force in the pure bending section of a steel beam: (a) 1800 mm steel beam; (b) 1500 mm steel beam

    图  19  钢梁纯弯段应力与磁信号关系曲线。(a)1800 mm钢梁;(b)1500 mm钢梁

    Figure  19.  Relationship curves of the stress and magnetic signal in the pure bending section of a steel beam: (a) 1800 mm steel beam; (b) 1500 mm steel beam

    图  20  钢梁翼缘力与磁信号梯度峰值曲线。(a)1800 mm钢梁;(b)1500 mm钢梁

    Figure  20.  Peak gradient curves of the steel beam flange force and magnetic signal: (a) 1800 mm steel beam; (b) 1500 mm steel beam

    图  21  力与磁场梯度指数关系曲线。(a)1800 mm钢梁;(b)1500 mm钢梁

    Figure  21.  Exponential relationship curves between the force and magnetic field gradient: (a) 1800 mm steel beam; (b) 1500 mm steel beam

    表  1  Q345qC 钢材化学成分(质量分数)

    Table  1.   Q345qC steel chemical composition %

    CSiMnSP
    0.150.381.6$ \leqslant $0.035$ \leqslant $0.035
    下载: 导出CSV

    表  2  Q345qC钢材的力学参数

    Table  2.   Mechanical parameters of Q345qC steel

    Elasticity modulus/GPaYield strength/
    MPa
    Strength of extension/MPaElongation/
    %
    201$ \geqslant $345510$ \geqslant $21
    下载: 导出CSV
  • [1] Chen J B. Research on Mechanical Performance of Steel Box Girder of a Viaduct Reconstruction Project [Dissertation]. Changsha: Central South University, 2009

    陈建波. 某高架桥改造工程钢箱梁力学性能研究[学位论文]. 长沙: 中南大学, 2009
    [2] Yao N. Research on Relative Methods of Damage Inspecting and Safety Appraisal of Bridge Steel Structures in Service [Dissertation]. Beijing: Tsinghua University, 2009

    姚南. 在役桥梁钢结构损伤检测与安全评估相关方法的研究[学位论文]. 北京: 清华大学, 2009
    [3] Xu B S, Dong L H. Metal Magnetic Memory Testing Method in Remanufacturing Quality Control. Beijing: National Defense Industry Press, 2015

    徐滨士, 董丽虹. 再制造质量控制中的金属磁记忆检测技术. 北京: 国防工业出版社, 2015
    [4] Shi P P. Quantitative Study of Micro-Magnetic Nondestructive Testing for Stress and Defect in Ferromagnetic Materials [Dissertation]. Xi'an: Xidian University, 2017

    时朋朋. 铁磁材料应力和缺陷的微磁检测定量化研究[学位论文]. 西安: 西安电子科技大学, 2017
    [5] Bulte D P, Langman R A. Origins of the magnetomechanical effect. J Magn Magn Mater, 2002, 251(2): 229 doi: 10.1016/S0304-8853(02)00588-7
    [6] Dubov A A. A study of metal properties using the method of magnetic memory. Met Sci Heat Treat, 1997, 39(9): 401 doi: 10.1007/BF02469065
    [7] Xing H Y, Xu M Q, Li J W. Magnetic Memory Testing Technology and Engineering Application. Beijing: China Petrochemical Press, 2011

    邢海燕, 徐敏强, 李建伟. 磁记忆检测技术及工程应用. 北京: 中国石化出版社, 2011
    [8] Su S Q, Liu X W, Wang W, et al. Progress and key problems in the research on metal magnetic memory testing technology. Chin J Eng, 2020, 42(12): 1557

    苏三庆, 刘馨为, 王威, 等. 金属磁记忆检测技术研究新进展与关键问题. 工程科学学报, 2020, 42(12):1557
    [9] Shi P P, Su S Q, Chen Z M. Overview of researches on the nondestructive testing method of metal magnetic memory: Status and challenges. J Nondestruct Eval, 2020, 39(2): 1
    [10] Qian Z C, Huang H H, Han G, et al. Review on metal magnetic memory detection technology in remanufacturing and case study in engineering. J Mech Eng, 2018, 54(17): 235 doi: 10.3901/JME.2018.17.235

    钱正春, 黄海鸿, 韩刚, 等. 面向再制造的金属磁记忆检测技术研究综述及工程应用案例. 机械工程学报, 2018, 54(17):235 doi: 10.3901/JME.2018.17.235
    [11] Su S Q, Ma X P, Wang W, et al. Stress-dependent magnetic charge model for micro-defects of steel wire based on the magnetic memory method. Res Nondestruct Eval, 2020, 31(1): 24 doi: 10.1080/09349847.2019.1617914
    [12] Ma X P, Su S Q, Wang W, et al. Damage location and numerical simulation for steel wire under torsion based on magnetic memory method. Int J Appl Electromagn Mech, 2019, 60(2): 223 doi: 10.3233/JAE-180075
    [13] Su S Q, Wang W. Non-destructive Testing of Building Steel Structure with Magnetic Memory. Beijing: Science Press, 2019

    苏三庆, 王威. 建筑钢结构磁记忆无损检测. 北京: 科学出版社, 2019
    [14] Yi S C, Wang W, Su S Q. Bending experimental study on metal magnetic memory signal based on von Mises yield criterion. Int J Appl Electromagn Mech, 2015, 49(4): 547 doi: 10.3233/JAE-150067
    [15] Su S Q, Qin Y L, Wang W, et al. Numerical simulation of stress-magnetization effect for bending states of Q235b steel beam based on magnetic memory. Mater Sci Technol, 2020, 28(5): 11

    苏三庆, 秦彦龙, 王威, 等. 基于磁记忆的Q235b受弯钢梁力磁效应数值模拟. 材料科学与工艺, 2020, 28(5):11
    [16] Yao K. Experimental Research on Testing and Evaluation of Early Damage of Ferromagnetic Materials Based on Metal Magnetic Memory Method [Dissertation]. Beijing: Beijing Jiaotong University, 2014

    姚凯. 基于金属磁记忆法的铁磁材料早期损伤检测与评价的实验研究[学位论文]. 北京: 北京交通大学, 2014
    [17] Ren J L, Lin J M. Metal Magnetic Memory Detection Technology. Beijing: China Electric Power Press, 2000

    任吉林, 林俊明. 金属磁记忆检测技术. 北京: 中国电力出版社, 2000
    [18] Yao K, Wang Z D, Deng B, et al. Experimental research on metal magnetic memory method. Exp Mech, 2012, 52(3): 305 doi: 10.1007/s11340-011-9490-3
    [19] Ren J L, Lin J M. Electromagnetic Nondestructive Testing. Beijing: Science Press, 2008

    任吉林, 林俊明. 电磁无损检测. 北京: 科学出版社, 2008
    [20] Jiles D. Introduction to Magnetism and Magnetic Materials. 3rd ed. London: Chapman and Hall Press, 2016
    [21] Jiles D C. Theory of the magnetomechanical effect. J Phys D Appl Phys, 1995, 28(8): 1537 doi: 10.1088/0022-3727/28/8/001
    [22] Yi S C, Wang W, Su S Q, et al. Using the characteristic parameters of magnetic memory signal to evaluate the tensile stress state. J Vib Meas Diagn, 2017, 37(4): 667

    易术春, 王威, 苏三庆, 等. 利用磁记忆信号特征参数表征拉伸应力状态. 振动 测试与诊断, 2017, 37(4):667
    [23] Jiles D C, Devine M K. Recent developments in modeling of the stress derivative of magnetization in ferromagnetic materials. J Appl Phys, 1994, 76(10): 7015 doi: 10.1063/1.358072
    [24] Sablik M J, Jiles D C. Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn, 1993, 29(4): 2113 doi: 10.1109/20.221036
    [25] Yang E, Li L M, Chen X. Magnetic field aberration induced by cycle stress. J Magn Magn Mater, 2007, 312(1): 72 doi: 10.1016/j.jmmm.2006.09.019
    [26] Cullity B D, Graham C D. Introduction to Magnetic Materials. 2nd Ed. Hoboken: John Wiley Press, 2008
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  114
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-10
  • 网络出版日期:  2021-11-23
  • 刊出日期:  2022-05-05

目录

    /

    返回文章
    返回