• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

堆存温度对半水磷石膏胶凝性能影响

王志凯 王贻明 吴爱祥 李根 李剑秋

王志凯, 王贻明, 吴爱祥, 李根, 李剑秋. 堆存温度对半水磷石膏胶凝性能影响[J]. 工程科学学报, 2022, 44(5): 840-848. doi: 10.13374/j.issn2095-9389.2020.11.13.001
引用本文: 王志凯, 王贻明, 吴爱祥, 李根, 李剑秋. 堆存温度对半水磷石膏胶凝性能影响[J]. 工程科学学报, 2022, 44(5): 840-848. doi: 10.13374/j.issn2095-9389.2020.11.13.001
WANG Zhi-kai, WANG Yi-ming, WU Ai-xiang, LI Gen, LI Jian-qiu. Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum[J]. Chinese Journal of Engineering, 2022, 44(5): 840-848. doi: 10.13374/j.issn2095-9389.2020.11.13.001
Citation: WANG Zhi-kai, WANG Yi-ming, WU Ai-xiang, LI Gen, LI Jian-qiu. Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum[J]. Chinese Journal of Engineering, 2022, 44(5): 840-848. doi: 10.13374/j.issn2095-9389.2020.11.13.001

堆存温度对半水磷石膏胶凝性能影响

doi: 10.13374/j.issn2095-9389.2020.11.13.001
基金项目: 国家自然科学基金资助项目(51674012)
详细信息
    通讯作者:

    E-mail: ustbwym@126.com

  • 中图分类号: TD853

Effect of storage temperature on the cementitious property of hemihydrate phosphogypsum

More Information
  • 摘要: 半水磷石膏(HPG)长时间堆存状态下会出现固结现象,其胶凝性能也相应下降。以室内HPG结晶水检测和单轴压缩试验为基础,通过设定4种不同堆存温度,分别为20,40,60和80 ℃,探究不同堆存温度作用下HPG试样结晶水质量分数变化和堆存后制备的充填胶凝材料(HCM)抗压强度发展规律,并采用扫描电镜等微观分析手段研究堆存温度对其强度影响机制。结果表明,堆存温度对HPG胶凝性能影响显著,高的堆存温度会加快HPG试样中的自由水转变为结晶水速率,而且会抑制堆存后制备的HCM强度发展。采用数据标准化对不同堆存温度作用后的试样抗压强度作出预测,被证实与实测值较吻合。微观分析发现,堆存温度主要影响体系的过饱和度,而使不同堆存温度作用后制备的HCM微观形态表现差异。

     

  • 图  1  HPG的矿物组成和微观形貌分析。(a)HPG的X射线衍射图;(b)HPG的微观结构图

    Figure  1.  Mineral composition and micromorphology analysis of HPG: (a) X-ray diffraction pattern of HPG; (b) microstructure of HPG

    图  2  HPG粒径分布

    Figure  2.  Particle size distribution of HPG

    图  3  室内小型堆体模型

    Figure  3.  Indoor small pile model

    图  4  不同堆存温度HPG结晶水质量分数变化过程

    Figure  4.  Variation process of the HPG crystal water mass fraction at different storage temperatures

    图  5  不同堆存温度HCM试样强度发展过程

    Figure  5.  Strength development process of HCM specimens at different storage temperatures

    图  6  不同堆存温度下HPG胶凝性能标准化。(a)HPG结晶水质量分数标准化;(b)HCM强度标准化

    Figure  6.  Standardization of HPG properties at different storage temperatures: (a) standardization of HPG crystal water mass fraction; (b) standardization of HCM strength

    图  7  试样标准化强度发展曲线斜率与截距误差。(a)斜率误差(3~90 d);(b)截距误差(3~90 d)

    Figure  7.  Slope and intercept error of the standardized strength development curve of the specimen: (a) slope error (3–90 d); (b) intercept error (3–90 d)

    图  8  强度预测方程验证

    Figure  8.  Strength prediction equation verification

    图  9  不同堆存温度下HCM微观结构图。(a)20 ℃;(b)40 ℃;(c)60 ℃;(d)80 ℃

    Figure  9.  HCM microstructure of different storage temperatures: (a) 20 ℃; (b) 40 ℃; (c) 60 ℃; (d) 80 ℃

    图  10  硬化过程示意图

    Figure  10.  Schematic diagram of the hardening process

    表  1  HPG化学成份及含水率测定结果表(质量分数)

    Table  1.   Hemihydrate phosphogypsum’s chemical composition and moisture content %

    CaOAl2O3SiO2P2O5MgOFe2O3SO3SrOlossFree waterCrystal water
    37.862.464.201.370.280.4544.820.360.2022.105.40
    下载: 导出CSV
  • [1] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

    蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略. 工程科学学报, 2019, 41(4):417
    [2] Wu A X, Li H, Cheng H Y, et al. Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): concepts, characteristics and models. Chin J Eng, 2020, 42(7): 803

    吴爱祥, 李红, 程海勇, 等. 全尾砂膏体流变学研究现状与展望(上): 概念、特性与模型. 工程科学学报, 2020, 42(7):803
    [3] Sun X W, Wu T J. Experimental research of alkali-activated slag cementitious material. Bull Chin Ceram Soc, 2014, 33(11): 3036

    孙小巍, 吴陶俊. 碱激发矿渣胶凝材料的试验研究. 硅酸盐通报, 2014, 33(11):3036
    [4] Liang Z Q. Review on development and application of new type backfilling cementing materials in mining industry. Met Mine, 2015(6): 164 doi: 10.3969/j.issn.1001-1250.2015.06.035

    梁志强. 新型矿山充填胶凝材料的研究与应用综述. 金属矿山, 2015(6):164 doi: 10.3969/j.issn.1001-1250.2015.06.035
    [5] Zhang G C, Yang Z Q, Gao Q, et al. Development of early strength filling cementing material with phosphogypsum as substitute of traditional cement. Met Mine, 2015(3): 194

    张光存, 杨志强, 高谦, 等. 利用磷石膏开发替代水泥的早强充填胶凝材料. 金属矿山, 2015(3):194
    [6] Li J Q, Li Z J, Wang J C, et al. Development status and prospect of phosphogypsum filling material and technique. Mod Min, 2018(10): 1 doi: 10.3969/j.issn.1674-6082.2018.10.001

    李剑秋, 李子军, 王佳才, 等. 磷石膏充填材料与技术发展现状及展望. 现代矿业, 2018(10):1 doi: 10.3969/j.issn.1674-6082.2018.10.001
    [7] Wang Y M, Wang Z K, Wu A X, et al. Preparation of new cementitious backfilling material and its curing mechanism analysis. Met Mine, 2018(6): 20

    王贻明, 王志凯, 吴爱祥, 等. 新型胶凝充填材料制备及固化机理分析. 金属矿山, 2018(6):20
    [8] Lan W T, Wu A X, Wang Y M, et al. Optimization of filling ratio of hemihydrate phosphogypsum based on orthogonal test. Chin J Nonferrous Met, 2019, 29(5): 1083

    兰文涛, 吴爱祥, 王贻明, 等. 基于正交试验的半水磷石膏充填配比优化. 中国有色金属学报, 2019, 29(5):1083
    [9] Lan W T, Wu A X, Wang Y M. Formulation optimization and formation mechanism of condensate expansion and filling composites. Acta Mater Compos Sin, 2019, 36(6): 1536

    兰文涛, 吴爱祥, 王贻明. 凝水膨胀充填复合材料的配比优化与形成机制. 复合材料学报, 2019, 36(6):1536
    [10] Jiang G Z, Wu A X, Wang Y M, et al. Effect of lime on properties of filling cementitious material prepared by hemihydrate phosphogypsum. J Chin Ceram Soc, 2020, 48(1): 86

    姜关照, 吴爱祥, 王贻明, 等. 生石灰对半水磷石膏充填胶凝材料性能影响. 硅酸盐学报, 2020, 48(1):86
    [11] Lan W T, Wu A X, Wang Y M, et al. Ionic solidification and size effect of hemihydrate phosphogypsum backfill. China Environ Sci, 2019, 39(1): 210 doi: 10.3969/j.issn.1000-6923.2019.01.024

    兰文涛, 吴爱祥, 王贻明, 等. 半水磷石膏充填体离子固化与尺寸效应. 中国环境科学, 2019, 39(1):210 doi: 10.3969/j.issn.1000-6923.2019.01.024
    [12] Yang B. Study on the Process of Hydrothermal Treatment of Phosphogypsum [Dissertation]. Kunming: Kunming University of Science and Technology, 2006

    杨斌. 水热法处理磷石膏过程研究[学位论文]. 昆明: 昆明理工大学, 2006
    [13] Lan W T, Wu A X, Wang Y M, et al. Experimental study on influencing factors of the filling strength of hemihydrate phosphogypsum. J Harbin Inst Technol, 2019, 51(8): 128 doi: 10.11918/j.issn.0367-6234.201804082

    兰文涛, 吴爱祥, 王贻明, 等. 半水磷石膏充填强度影响因素试验. 哈尔滨工业大学学报, 2019, 51(8):128 doi: 10.11918/j.issn.0367-6234.201804082
    [14] Yang L, Cao J X, Liu Y M. Mineralogical characteristics of hemi-hydrate phosphogypsum. Acta Petrol Mineral, 2015, 34(6): 827 doi: 10.3969/j.issn.1000-6524.2015.06.005

    杨林, 曹建新, 刘亚明. 半水磷石膏的矿物学特征. 岩石矿物学杂志, 2015, 34(6):827 doi: 10.3969/j.issn.1000-6524.2015.06.005
    [15] Chitambira B. Accelerated Ageing of Cement Stabilised/Solidified Contaminated Soils with Elevated Temperatures [Dissertation]. Cambridge: Cambridge University, 2004
    [16] Zhang R J, Zheng J J, Cheng Y S, et al. Experimental investigation on effect of curing temperature on strength development of cement stabilized clay. Rock Soil Mech, 2016, 37(12): 3463

    章荣军, 郑俊杰, 程钰诗, 等. 养护温度对水泥固化淤泥强度影响试验研究. 岩土力学, 2016, 37(12):3463
    [17] Morohoshi K, Yoshinaga K, Miyata M, et al. Design and long-term monitoring of Tokyo International Airport extension project constructed on super-soft ground. Geotech Geol Eng, 2010, 28(3): 223 doi: 10.1007/s10706-010-9312-x
    [18] Yao S, Han B, Wu A X, et al. The effect of temperature on strength of wet shotcrete in cold mining areas and its engineering application. J Min Saf Eng, 2017, 34(2): 384

    姚松, 韩斌, 吴爱祥, 等. 温度对高寒矿山湿喷混凝土强度影响规律及工程应用研究. 采矿与安全工程学报, 2017, 34(2):384
    [19] Wang D X, Gao X Y, Zou W L, et al. Study on strength predication of reactive MgO-slag/fly ash stabilized clay considering high temperature effect. J Huazhong Univ Sci Technol Nat Sci Ed, 2019, 47(6): 92

    王东星, 高向雲, 邹维列, 等. 高温效应下MgO-矿粉/粉煤灰固化土强度预测. 华中科技大学学报(自然科学版), 2019, 47(6):92
    [20] Yang C J, Yang M, Cao J X. Study on hydration and hardening of duplex gypsum binder of hemihydrite phosphogypsum and anhydrite phosphogypsum. Non-Metallic Mines, 2014(6): 22 doi: 10.3969/j.issn.1000-8098.2014.06.008

    杨成军, 杨敏, 曹建新. 半水/无水磷石膏复相胶凝材料水化硬化特性研究. 非金属矿, 2014(6):22 doi: 10.3969/j.issn.1000-8098.2014.06.008
    [21] Zhang J L. Research on the Effects of Water-reducing Agents on the Hydration and Setting of α-Calcium Sulfate Hemihydrates [Dissertation]. Hangzhou: Zhejiang University, 2008

    张佳莉. 减水剂对α半水石膏水化硬化过程的影响研究[学位论文]. 杭州: 浙江大学, 2008
    [22] Lin Z S. Cementitious Materials Science. Wuhan: Wuhan University of Technology Press, 2014

    林宗寿. 胶凝材料学. 武汉: 武汉理工大学出版社, 2014
    [23] Lan W T. Research on Hemihydrate Phosphogypsum Based Mineral Filling Composites and Its Pipe Flow Performance [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    兰文涛. 半水磷石膏基矿用复合充填材料及其管输特性研究[学位论文]. 北京: 北京科技大学, 2019
    [24] Jiang G Z, Wu A X, Wang Y M, et al. Low cost and high efficiency utilization of hemihydrate phosphogypsum: Used as binder to prepare filling material. Constr Build Mater, 2018, 167: 263 doi: 10.1016/j.conbuildmat.2018.02.022
    [25] Rong K W, Lan W T, Li H Y. Industrial experiment of goaf filling using the filling materials based on hemihydrate phosphogypsum. Minerals, 2020, 10(4): 324 doi: 10.3390/min10040324
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  187
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-13
  • 网络出版日期:  2020-12-23
  • 刊出日期:  2022-05-05

目录

    /

    返回文章
    返回