• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子交换树脂对Pt/C催化剂耐久性的影响

王园 李赏 刘声楚 洪亢 张立昌 汪如意 潘牧

王园, 李赏, 刘声楚, 洪亢, 张立昌, 汪如意, 潘牧. 离子交换树脂对Pt/C催化剂耐久性的影响[J]. 工程科学学报, 2021, 43(8): 1073-1080. doi: 10.13374/j.issn2095-9389.2020.11.17.004
引用本文: 王园, 李赏, 刘声楚, 洪亢, 张立昌, 汪如意, 潘牧. 离子交换树脂对Pt/C催化剂耐久性的影响[J]. 工程科学学报, 2021, 43(8): 1073-1080. doi: 10.13374/j.issn2095-9389.2020.11.17.004
WANG Yuan, LI Shang, LIU Sheng-chu, HONG Kang, ZHANG Li-chang, WANG Ru-yi, PAN Mu. Influence of ionomer on the durability of Pt/C catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1073-1080. doi: 10.13374/j.issn2095-9389.2020.11.17.004
Citation: WANG Yuan, LI Shang, LIU Sheng-chu, HONG Kang, ZHANG Li-chang, WANG Ru-yi, PAN Mu. Influence of ionomer on the durability of Pt/C catalyst[J]. Chinese Journal of Engineering, 2021, 43(8): 1073-1080. doi: 10.13374/j.issn2095-9389.2020.11.17.004

离子交换树脂对Pt/C催化剂耐久性的影响

doi: 10.13374/j.issn2095-9389.2020.11.17.004
基金项目: 国家自然科学基金面上资助项目(22075218);先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金资助项目
详细信息
    通讯作者:

    E-mail:lishang@whut.edu.cn

  • 中图分类号: TM 911.42

Influence of ionomer on the durability of Pt/C catalyst

More Information
  • 摘要: 离子交换树脂(Ionomer)是质子交换膜燃料电池催化层的重要组成部分,它在催化层中的主要作用是作为质子传导相传导质子。本文采用旋转圆盘电极法(RDE),在模拟燃料电池真实的运行环境(模式一)和模拟燃料电池启停环境(模式二)两种模式下,研究了Ionomer对铂碳催化剂电压循环耐久性的影响。通过相同位置透射电镜分析法(IL-TEM),分析了铂碳催化剂经历模式二耐久性测试后的结构变化。研究发现Ionomer的存在可以提高铂碳催化剂的耐久性。在模式一的测试中:添加Ionomer后,其氧还原半波电位下降值∆E从23 mV下降至11 mV;没有发生碳的腐蚀,Pt颗粒的长大是催化剂性能下降的主要原因;Ionomer的存在延缓了Pt电化学比表面积(ECSA)的降低从而有利于保持Pt的活性。在模式二的测试中:添加Ionomer后,其氧还原半波电位下降值∆E从25 mV下降至5 mV,除了铂颗粒长大外还发生了载体碳的腐蚀;Ionomer的存在同样可以保持Pt的活性;IL-TEM分析可以看到明显的铂颗粒长大和碳腐蚀,碳载体的腐蚀造成铂的严重流失和团聚。含Nafion的催化剂中铂颗粒平均粒径从2.7 nm增加到了3.76 nm,不含Nafion的催化剂中的铂颗粒平均粒径从2.44 nm增加到了4.19 nm。

     

  • 图  1  模拟燃料电池真实的运行环境的加速模式图(a)和模拟燃料电池启停环境的加速模式图(b)

    Figure  1.  Acceleration mode diagram that simulates the real operating environment of the fuel cell (a) and acceleration mode diagram that simulates the start-stop environment of the fuel cell (b)

    图  2  金色TEM网格和PTFE(聚四氟乙烯)盖固定在GC尖端上

    Figure  2.  Golden TEM grid and PTFE cap are fixed on the GC tip

    图  3  样品一(a)和样品二(b)按模式一经历0、3×103、6×103和104次循环后的CV曲线和ECSA的变化情况(c)

    Figure  3.  CV curves of sample 1 (a) and sample 2 (b) after 0, 3×103, 6×103和104 cycles in mode 1, and changes in ECSA (c)

    图  4  样品一(a)和样品二(b)在0、3×103、6×103和104次循环后的LSV曲线

    Figure  4.  LSV curves of sample 1 (a) and sample 2 (b) after 0, 3×103, 6×103 and 104 cycles

    图  5  样品一(a)和样品二(b)按模式二经历0、3×103、9×103和2.7×104次循环后的CV曲线和ECSA的变化情况(c)

    Figure  5.  CV curves of sample 1 (a) and sample 2 (b) after 0, 3×103, 9×103, and 2.7×104 cycles in mode 2, and changes in ECSA (c)

    图  6  样品一(a)和样品二(b)经历0、3×103、9×103和2.7×104次循环后的LSV曲线

    Figure  6.  LSV curves of sample 1(a) and sample 2 (b) after 0, 3×103, 9×103, and 2.7×104 cycles

    图  7  样品一在耐久性测试前(a, c)和2.7×104次耐久性循环测试后(b, d)相同位置的TEM电镜图(a, b)和催化剂粒径分布图(c, d)

    Figure  7.  TEM electron microscope image of the same position of the catalyst (a, b) and catalyst particle size distribution diagram (c, d) in sample 1 before the durability test (a, c), and after the 2.7×104 durability cycle test (b, d)

    图  8  样品二在耐久性测试前(a, c)和2.7×104次耐久性循环测试后(b, d)相同位置的TEM电镜图(a, b)和催化剂粒径分布图(c, d)

    Figure  8.  TEM electron microscope image of the same position of the catalyst (a, b) and catalyst particle size distribution diagram (c, d) in sample 2 before the durability test (a, c), and after the 2.7×104 durability cycle test (b, d)

  • [1] Cherevko S, Kulyk N, Mayrhofer K J J. Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum. Nano Energy, 2016, 29: 275 doi: 10.1016/j.nanoen.2016.03.005
    [2] Sun S, Liu Z D, Diao P. Preparation and catalytic studies of pyrrole-doped carbon black oxide cathode materials for oxygen reduction reactions. Chin J Eng, 2019, 41(2): 216

    孙珊, 刘桎东, 刁鹏. 吡咯/炭黑氧化物复合氧阴极材料的制备及催化性能. 工程科学学报, 2019, 41(2):216
    [3] Souza N E, Bott-Neto J L, Rocha T A, et al. Support modification in Pt/C electrocatalysts for durability increase: A degradation study assisted by identical location transmission electron microscopy. Electrochimica Acta, 2018, 265: 523 doi: 10.1016/j.electacta.2018.01.180
    [4] Bandarenka A S, Ventosa E, Maljusch A, et al. Techniques and methodologies in modern electrocatalysis: Evaluation of activity, selectivity and stability of catalytic materials. Analyst, 2014, 139(6): 1274 doi: 10.1039/c3an01647a
    [5] Huang K, Zhu M T, Zhang F P, et al. Preparation of CoP/Co@NPC@rGO nanocomposites with an efficient bifunctiona electrocatalyst for hydrogen evolution and oxygen evolution reaction. Chin J Eng, 2020, 42(1): 91

    黄康, 朱梅婷, 张飞鹏, 等. 一种高效双功能电催化剂CoP/Co@NPC@rGO的制备. 工程科学学报, 2020, 42(1):91
    [6] Arenz M, Zana A. Fuel cell catalyst degradation: Identical location electron microscopy and related methods. Nano Energy, 2016, 29: 299 doi: 10.1016/j.nanoen.2016.04.027
    [7] Meier J C, Galeano C, Katsounaros I, et al. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start–stop conditions. ACS Catal, 2012, 2(5): 832 doi: 10.1021/cs300024h
    [8] Hartl K, Hanzlik M, Arenz M. IL-TEM investigations on the degradation mechanism of Pt/C electrocatalysts with different carbon supports. Energy Environ Sci, 2011, 4(1): 234 doi: 10.1039/C0EE00248H
    [9] Zana A, Speder J, Roefzaad M, et al. Probing degradation by IL-TEM: The influence of stress test conditions on the degradation mechanism. J Electrochem Soc, 2013, 160(6): F608 doi: 10.1149/2.078306jes
    [10] Speder J, Zana A, Spanos I, et al. Comparative degradation study of carbon supported proton exchange membrane fuel cell electrocatalysts - The influence of the platinum to carbon ratio on the degradation rate. J Power Sources, 2014, 261: 14 doi: 10.1016/j.jpowsour.2014.03.039
    [11] Hengge K, Gänsler T, Pizzutilo E, et al. Accelerated fuel cell tests of anodic Pt/Ru catalyst via identical location TEM: New aspects of degradation behavior. Int J Hydrog Energy, 2017, 42(40): 25359 doi: 10.1016/j.ijhydene.2017.08.108
    [12] Arán-Ais R M, Yu Y C, Hovden R, et al. Identical location transmission electron microscopy imaging of site-selective Pt nanocatalysts: Electrochemical activation and surface disordering. J Am Chem Soc, 2015, 137(47): 14992 doi: 10.1021/jacs.5b09553
    [13] Sakthivel M, Drillet J F. An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl Catal B:Environ, 2018, 231: 62 doi: 10.1016/j.apcatb.2018.02.050
    [14] Schonvogel D, Hülstede J, Wagner P, et al. Stability of Pt nanoparticles on alternative carbon supports for oxygen reduction reaction. J Electrochem Soc, 2017, 164(9): F995 doi: 10.1149/2.1611709jes
    [15] Gasteiger H A, Kocha S S, Sompalli B, et al. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B:Environ, 2005, 56(1-2): 9 doi: 10.1016/j.apcatb.2004.06.021
    [16] Inaba M, Jensen A W, Sievers G W, et al. Benchmarking high surface area electrocatalysts in a gas diffusion electrode: Measurement of oxygen reduction activities under realistic conditions. Energy Environ Sci, 2018, 11(4): 988 doi: 10.1039/C8EE00019K
    [17] Nonoyama N, Okazaki S, Weber A Z, et al. Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J Electrochem Soc, 2011, 158(4): B416 doi: 10.1149/1.3546038
    [18] Kongkanand A, Mathias M F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett, 2016, 7(7): 1127 doi: 10.1021/acs.jpclett.6b00216
    [19] Kocha S S, Zack J W, Alia S M, et al. Influence of ink composition on the electrochemical properties of Pt/C electrocatalysts. ECS Trans, 2013, 50(2): 1475 doi: 10.1149/05002.1475ecst
    [20] Ohma A, Fushinobu K, Okazaki K. Influence of Nafion® film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell. Electrochimica Acta, 2010, 55(28): 8829 doi: 10.1016/j.electacta.2010.08.005
    [21] Mayrhofer K J J, Ashton S J, Meier J C, et al. Non-destructive transmission electron microscopy study of catalyst degradation under electrochemical treatment. J Power Sources, 2008, 185(2): 734 doi: 10.1016/j.jpowsour.2008.08.003
    [22] Schlögl K, Hanzlik M, Arenz M. Comparative IL-TEM study concerning the degradation of carbon supported Pt-based electrocatalysts. J Electrochem Soc, 2012, 159(6): B677 doi: 10.1149/2.035206jes
    [23] Yu Y C, Xin H L, Hovden R, et al. Three-dimensional tracking and visualization of hundreds of Pt−Co fuel cell nanocatalysts during electrochemical aging. Nano Lett, 2012, 12(9): 4417 doi: 10.1021/nl203920s
    [24] Nikkuni F R, Dubau L, Ticianelli E A, et al. Accelerated degradation of Pt3Co/C and Pt/C electrocatalysts studied by identical-location transmission electron microscopy in polymer electrolyte environment. Appl Catal B:Environ, 2015, 176-177: 486 doi: 10.1016/j.apcatb.2015.04.035
    [25] Vion-Dury B, Chatenet M, Guétaz L, et al. Determination of aging markers and their use as a tool to characterize Pt/C nanoparticles degradation mechanism in model PEMFC cathode environment. ECS Trans, 2019, 41(1): 697 doi: 10.1149/1.3635604
  • 加载中
图(8)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  79
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-17
  • 网络出版日期:  2021-03-13
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回