Effect of slag composition on desulfurization and alkali removal ability of blast furnace slag for Bayan Obo iron ore
-
摘要: 为了探明炉渣成分对冶炼白云鄂博矿高炉渣脱硫和排碱能力的影响,在实际高炉渣成分的基础上,通过正交试验和Factsage 7.1热力学模拟软件绘制不同组分高炉渣渣系五元伪三元相图,探究了自由碱度(Ro)、w(MgO)和w(Al2O3)对高炉渣脱硫、排碱能力的影响规律,并结合生产实际给出了适宜的炉渣自由碱度(Ro)、w(MgO)和w(Al2O3)的控制范围。研究表明: Ro是影响炉渣脱硫、排碱能力的最显著因素,Ro增加,渣中O2−浓度升高,促使硅氧复合阴离子Si−O解体,炉渣黏度减小,炉渣与金属液体之间的传质过程得到促进,使得S2−更容易向渣中迁移,炉渣脱硫的热力学和动力学条件改善,脱硫能力提高,适宜的Ro应控制在1.05~1.15;w(MgO)是影响炉渣脱硫能力的次要因素,w(MgO)增加,炉渣的流动性和稳定性提高,有利于改善炉渣脱硫的动力学条件,且可降低炉渣中(K2O+Na2O)的活度,提高排碱能力,适宜w(MgO)应控制在15%左右;w(Al2O3)是影响炉渣排碱能力的次要因素,w(Al2O3)增加,易生成镁铝尖晶石(MgAl2O4)等高熔点物质,使炉渣中的自由氧离子消耗量增多,不利于脱硫反应动力学条件的改善,虽然增加w(Al2O3)有益于排碱,但高w(Al2O3)不利于脱硫,且会导致炉渣黏度上升,适宜w(Al2O3)应控制在12%左右。Abstract: To investigate the effect of slag composition on desulfurization and alkali removal ability of blast furnace slag for smelting Bayan Obo ore, based on the actual composition of blast furnace slag, the effect of free basicity (Ro), w(MgO), and w(Al2O3) on the desulfurization and alkali removal ability of blast furnace slag was investigated by performing orthogonal experiments and on the basis of five-element pseudoternary phase diagrams of various components of a blast furnace slag system calculated and drawn using Factsage 7.1 thermodynamic simulation software, and the appropriate control range of Ro, w(MgO) and w(Al2O3) in the slag were given in combination with the production practice. The results show that: Ro is the most significant factor affecting slag desulfurization and alkali removal ability. With the increase in Ro, the O2− concentration in slag increases, resulting in Si−O disintegration, and slag viscosity decreases. In addition, the mass transfer between slag and metal liquid is accelerated, which makes S2− easier to migrate into slag, the thermodynamic and kinetic conditions of slag desulfurization are improved, thus improving the desulfurization ability. The appropriate Ro should be controlled within the range of 1.05–1.15. w(MgO) is a secondary factor affecting the slag desulfurization ability. With the increase in w(MgO), the fluidity and stability of the slag are improved, which are beneficial for improving the kinetic conditions of slag desulfurization and reducing the activity of (K2O+Na2O) in the slag, thus improving the alkali removal ability. Appropriate w(MgO) should be controlled at approximately 15%. w(Al2O3) is a secondary factor affecting the alkali removal ability of blast furnace slag. With the increase in w(Al2O3), high melting point materials such as MgAl2O4 are easily formed, thereby increasing the consumption of free oxygen ions in the slag. This increase is not conducive to the improvement of desulfurization reaction kinetic conditions. Although increasing w(Al2O3) is beneficial for removing alkali, high w(Al2O3) is not conducive to desulfurization and leads to an increase in slag viscosity. Appropriate w(Al2O3) should be controlled at approximately 12%.
-
Key words:
- blast furnace slag /
- Bayan Obo iron ore /
- slag composition /
- desulfurization /
- alkali removal
-
图 7 不同Al2O3含量的 CaO−SiO2−MgO−Al2O3−CaF2 五元渣伪三元相图. (a) w(Al2O3)=11%; (b) w(Al2O3)=13%; (c) w(Al2O3)=15%; (d) w(Al2O3)=17%
Figure 7. Pseudoternary phase diagram of CaO−SiO2−MgO−Al2O3−CaF2 five-component slag with different Al2O3 contents: (a) w(Al2O3)=11%; (b) w(Al2O3)=13%; (c) w(Al2O3)=15%; (d) w(Al2O3)=17%
表 1 高炉渣实际化学成分
Table 1. Actual chemical composition of blast furnace slag
w(CaO)/% w(SiO2)/% w(MgO)/% w(Al2O3)/% w(F)/% w(Na2O)/% w(K2O)/% w(S)/% Ro 34.93 35.70 9.70 11.77 0.38 0.46 0.56 1.39 0.96 表 2 实验设计方案
Table 2. Experimental design scheme
Experiment number Ro w(MgO)/% w(Al2O3)/% 1# C3(1.15) A1(10) B2(13) 2# C1(0.95) A3(14) B4(17) 3# C3(1.15) A2(12) B4(17) 4# C1(0.95) A4(16) B2(13) 5# C1(0.95) A1(10) B3(15) 6# C3(1.15) A3(14) B1(11) 7# C1(0.95) A2(12) B1(11) 8# C3(1.15) A4(16) B3(15) 9# C4(1.25) A1(10) B1(11) 10# C2(1.05) A3(14) B3(15) 11# C4(1.25) A2(12) B3(15) 12# C2(1.05) A4(16) B1(11) 13# C2(1.05) A1(10) B4(17) 14# C4(1.25) A3(14) B2(13) 15# C2(1.05) A2(12) B2(13) 16# C4(1.25) A4(16) B4(17) Note: Ro is the free basicity, and the calculation formula is as follows: $ {R}_{\mathrm{O}}=[w\left(\mathrm{C}\mathrm{a}\mathrm{O}\right)-1.473\times w\left(\mathrm{F}\right)]/w\left({\mathrm{S}\mathrm{i}\mathrm{O}}_{2}\right) $, which is the representation method of basicity of fluorine-containing blast furnace slag in Bayan Obo iron ore. 表 3 合成渣实际化学成分
Table 3. Actual chemical composition of synthetic blast furnace slag
Experiment number w(CaO)/% w(SiO2)/% w(MgO)/% w(Al2O3)/% w(F)/% w(Na2O)/% w(K2O)/% w(S)/% Ro 1# 36.03 30.44 9.83 12.78 0.98 0.68 0.41 1.17 1.14 2# 31.07 31.05 13.21 16.21 0.73 0.59 0.32 1.01 0.96 3# 34.62 29.65 12.66 17.40 0.82 0.63 0.35 0.98 1.13 4# 32.56 32.16 14.73 13.14 0.82 0.58 0.41 1.06 0.97 5# 33.27 33.49 10.42 14.29 0.94 0.61 0.42 1.05 0.95 6# 35.93 30.22 13.63 11.66 0.91 0.63 0.45 1.16 1.14 7# 33.84 34.33 12.71 11.71 0.81 0.65 0.39 0.96 0.95 8# 32.75 27.98 16.38 15.27 0.72 0.58 0.35 0.87 1.13 9# 38.93 31.02 10.65 11.43 0.73 0.61 0.38 0.95 1.22 10# 32.52 30.25 14.52 15.54 0.79 0.67 0.37 0.96 1.04 11# 35.85 28.16 12.65 15.36 0.78 0.55 0.35 0.88 1.23 12# 33.16 31.11 15.92 11.13 0.82 0.66 0.38 0.97 1.03 13# 32.87 30.5 10.63 17.24 0.80 0.65 0.41 0.97 1.04 14# 36.22 28.71 14.68 13.57 0.73 0.56 0.35 0.86 1.22 15# 33.87 31.7 12.70 13.35 0.89 0.64 0.40 0.96 1.03 16# 32.84 26.59 16.31 17.72 0.65 0.55 0.32 0.82 1.20 表 4 高炉渣脱硫实验结果极差分析
Table 4. Range analysis of experimental results of blast furnace slag desulfurization
Experiment number Ro w(MgO) w(Al2O3) w[S] w(S) Ls 1# C3 A1 B2 0.017 1.260 74.120 2# C1 A3 B4 0.018 1.010 56.110 3# C3 A2 B4 0.019 1.044 76.550 4# C1 A4 B2 0.013 1.030 79.230 5# C1 A1 B3 0.022 1.040 47.270 6# C3 A3 B1 0.012 1.240 103.330 7# C1 A2 B1 0.020 1.010 50.500 8# C3 A4 B3 0.010 0.991 99.100 9# C4 A1 B1 0.013 1.070 82.310 10# C2 A3 B3 0.015 0.978 65.200 11# C4 A2 B3 0.008 0.941 117.630 12# C2 A4 B1 0.014 1.040 74.290 13# C2 A1 B4 0.020 1.010 50.500 14# C4 A3 B2 0.008 0.979 122.380 15# C2 A2 B2 0.021 1.070 50.950 16# C4 A4 B4 0.010 0.867 86.700 Factor level mean, K1 58.28 63.55 77.61 — — — Factor level mean, K2 60.24 73.91 81.67 — — — Factor level mean, K3 88.28 86.76 82.30 — — — Factor level mean, K4 102.26 84.83 67.47 — — — Range, R 43.98 23.21 14.84 — — — 表 5 高炉渣脱硫实验结果回归方差分析
Table 5. Variance analysis of experimental results of blast furnace slag desulfurization
Parameter Df SS MS F value Significance F w(S) Regression analysis 3 0.000262 8.74×10−5 15.49949 0.000198 Residual 12 6.77×10−5 5.64×10−6 — — Sum 15 0.00033 — — — Ls Regression analysis 3 6573.193 2191.064 12.04054 0.000847 Residual 11 2001.713 181.9739 — — Sum 14 8574.906 — — — Note: Df represents degree of freedom; SS represents regression sum of squares; MS represents mean square; F value represents analysis of variance test statistics. 表 6 高炉渣排碱实验结果
Table 6. Experimental results of alkali removal from blast furnace slag
Experiment number Ro w(MgO) w(Al2O3) w(K2O+Na2O)/% 1# C3 A1 B2 0.608 2# C1 A3 B4 0.680 3# C3 A2 B4 0.295 4# C1 A4 B2 0.881 5# C1 A1 B3 0.826 6# C3 A3 B1 0.650 7# C1 A2 B1 0.638 8# C3 A4 B3 0.158 9# C4 A1 B1 0.212 10# C2 A3 B3 0.203 11# C4 A2 B3 0.097 12# C2 A4 B1 0.971 13# C2 A1 B4 0.42 14# C4 A3 B2 0.346 15# C2 A2 B2 0.580 16# C4 A4 B4 0.129 Factor level mean, K1 0.756 0.517 0.618 — Factor level mean, K2 0.544 0.403 0.604 — Factor level mean, K3 0.428 0.470 0.321 — Factor level mean, K4 0.196 0.535 0.381 — Range, R 0.560 0.132 0.297 — 表 7 高炉渣排碱实验结果回归方差分析
Table 7. Variance analysis of experimental results of alkali removal from blast furnace slag
Parameter Df SS MS F value Significance F Regression analysis 3 0.843671 0.281224 8.973547 0.00216 Residual 12 0.37607 0.031339 — — Sum 15 1.219742 — — — -
参考文献
[1] Ba Z W, Li M, Zhang D L, et al. Blast furnace slag and its current using status in Baotou steel. Met Mater Metall Eng, 2018, 46(3): 45巴增文, 李梅, 张栋梁, 等. 包钢高炉渣及其应用现状. 金属材料与冶金工程, 2018, 46(3):45 [2] Yang X. Comparison of Crust Evolution and Gold Deposits Genesis in the Bayan Obo-Alxa League Region, inner Mongolia [Dissertation]. Beijing: Chinese Academy of Geological Sciences, 2019杨轩. 内蒙古白云鄂博—阿拉善右旗地壳演化与金矿成因对比研究[学位论文]. 北京: 中国地质科学院, 2019 [3] Hao Z P, Guo Z T, Lian H, et al. Experimental study on the feasibility of improving blast furnace’s basicity of slag. Iron Steel Vanadium Titanium, 2016, 37(3): 98郝忠平, 郭卓团, 廉华, 等. 提高包钢高炉渣碱度的试验研究. 钢铁钒钛, 2016, 37(3):98 [4] Lv X W, Yan Z M, Pang Z D, et al. Effect of Al2O3 on physicochemical properties and structure of blast furnace slag: Review. Iron Steel, 2020, 55(2): 1吕学伟, 严志明, 庞正德, 等. Al2O3对高炉渣物化性能和结构影响研究综述. 钢铁, 2020, 55(2):1 [5] Luo G P, Sun G L, Zhang X F, et al. Desulphurization thermodynamics and kinetics of special BF slag at Baotou steel. J Iron Steel Res, 2007, 19(9): 9罗果萍, 孙国龙, 张学锋, 等. 包钢特殊矿冶炼高炉渣脱硫的热力学和动力学. 钢铁研究学报, 2007, 19(9):9 [6] Liu Z, Wang Y C, Zhao F G, et al. Influence of binary basicity on physical properties of blast furnace slag of Baogang Group. J Iron Steel Res, 2019, 31(8): 696柳哲, 王艺慈, 赵凤光, 等. 碱度对包钢高炉渣物理性能的影响. 钢铁研究学报, 2019, 31(8):696 [7] Pang Z D, Lv X W, Yan Z M, et al. Viscosity and free running temperature of ultra-high TiO2 bearing blast furnace slag. Iron Steel, 2020, 55(8): 181庞正德, 吕学伟, 严志明, 等. 超高TiO2高炉渣黏度及熔化性温度. 钢铁, 2020, 55(8):181 [8] Yuan X, Zhang J L, Mao R, et al. Effect of w(MgO)/w(Al2O3) ratio on desulfurization capacity of BF slag. J Northeast Univ (Nat Sci) , 2015, 36(11): 1609 doi: 10.12068/j.issn.1005-3026.2015.11.020袁骧, 张建良, 毛瑞, 等. 镁铝比对高炉渣脱硫能力的影响. 东北大学学报(自然科学版), 2015, 36(11):1609 doi: 10.12068/j.issn.1005-3026.2015.11.020 [9] Lv Q, Li F M, Gu L N, et al. Experimental investigation on dealkalization and desulphurization of alkaliferous BF slag. J Northeast Univ (Nat Sci) , 2007, 28(11): 1590 doi: 10.12068/j.issn.1005-3026.2007.11.019吕庆, 李福民, 顾林娜, 等. 含碱高炉渣排碱、脱硫能力的实验研究. 东北大学学报(自然科学版), 2007, 28(11):1590 doi: 10.12068/j.issn.1005-3026.2007.11.019 [10] Zhang X S, Lv Q, Liu X J, et al. Optimal proportion of Ti, Mg and Al in BF slag. Iron Steel, 2015, 50(6): 8张旭升, 吕庆, 刘小杰, 等. 高炉炉渣中钛、镁、铝最优配比. 钢铁, 2015, 50(6):8 [11] Xie H E. Effect of Ti(C, N) on desulfurization capacity of high-titanium-type blast furnace slag. China Metall, 2020, 30(1): 32谢洪恩. Ti(C, N)对高钛型高炉渣脱硫能力的影响. 中国冶金, 2020, 30(1):32 [12] Yao J B, Liu W G, Ju J T, et al. Study on desulphurization capacity of CaO–SiO2–MgO–Al2O3–BaO slag systems. J Iron Steel Res, 2019, 31(3): 280姚嘉斌, 刘文果, 巨建涛, 等. CaO–SiO2–MgO–Al2O3–BaO渣系脱硫能力研究. 钢铁研究学报, 2019, 31(3):280 [13] Zhang H S, Xu R Z, Zhang J L, et al. Study on desulfurization properties of blast furnace slag in Shougang Jingtang United Iron and Steel Co. , Ltd. Res Iron Steel, 2016, 44(5): 14张贺顺, 许仁泽, 张建良, 等. 首钢京唐高炉渣脱硫性能研究. 钢铁研究, 2016, 44(5): 14 [14] Dong X X, Zhang S H, Lan C C, et al. Study on dealkalization capacity of BF slag with low titanium content. Iron Steel Vanadium Titanium, 2016, 37(6): 99 doi: 10.7513/j.issn.1004-7638.2016.06.018董晓旭, 张淑会, 兰臣臣, 等. 低钛高炉渣排碱能力研究. 钢铁钒钛, 2016, 37(6):99 doi: 10.7513/j.issn.1004-7638.2016.06.018 [15] Wang P, Meng Q M, Long H M, et al. Influence of basicity and MgO on fluidity and desulfurization ability of high aluminum slag. High Temp Mater Process, 2016, 35(7): 669 doi: 10.1515/htmp-2015-0006 [16] Wang Z Y, Zhang J L, An G, et al. Analysis on the oversize blast furnace desulfurization and a sulfide capacity prediction model based on congregated electron phase. Metall Mater Trans B, 2016, 47(1): 127 doi: 10.1007/s11663-015-0462-3 [17] O Y K, Kong Y C, Sun Y Q, et al. Research development of alkali metal in blast furnace. J Hebei Polytech Univ (Nat Sci Ed) , 2011, 33(1): 37欧阳坤, 孔延厂, 孙艳芹, 等. 高炉中碱金属的研究进展. 河北理工大学学报(自然科学版), 2011, 33(1):37 [18] Zhu G Y, Zhang J L, Mao R, et al. Orthogonal experimental study on removal of alkalis through blast furnace slag. Res Iron Steel, 2013, 41(6): 19朱广跃, 张建良, 毛瑞, 等. 基于正交法的高炉渣排碱试验研究. 钢铁研究, 2013, 41(6):19 [19] Sun Y Q, Wang H, Zhang Z T. Understanding the relationship between structure and thermophysical properties of CaO–SiO2–MgO–Al2O3 molten slags. Metall Mater Trans B, 2018, 49(2): 677 doi: 10.1007/s11663-018-1178-y [20] Wang D Q, Ma Z J, Chen H, et al. Thermodynamic analysis of reducing MgO content in slag for blast furnace A in Shougang. China Metall, 2018, 28(10): 5王冬青, 马泽军, 陈辉, 等. 首钢A高炉炉渣降低MgO的热力学分析. 中国冶金, 2018, 28(10):5 [21] Taniguchi Y, Wang L J, Sano N, et al. Sulfide capacities of CaO–Al2O3–SiO2 slags in the temperature range 1673 K to 1773 K (1400 ℃ to 1500 ℃). Metall Mater Trans B, 2012, 43(3): 477 doi: 10.1007/s11663-011-9621-3 [22] Liu W G, Xing X D, Zuo H B. Effect of TiO2 on viscosity and sulfide capacity of blast furnace slag containing Barium. ISIJ Int, 2020, 60(9): 1886 doi: 10.2355/isijinternational.ISIJINT-2019-627 [23] Li Q H, Jia Y N, Zhang C J, et al. Viscosity-structure analysis of CaO–SiO2–MgO–Al2O3–Cr2O3 slags and application of Iida model. Iron Steel, 2019, 54(4): 99李秋寒, 贾雅楠, 张超杰, 等. CaO–SiO2–MgO–Al2O3–Cr2O3渣系黏度结构分析及Iida模型应用. 钢铁, 2019, 54(4):99 [24] Liu Y, Li G Q, Wang Q, et al. Effect of slag composition on desulfurization during recycling rejected electrolytic manganese metal by electroslag remelting. Metall Res Technol, 2021, 118(2): 206 doi: 10.1051/metal/2021019 [25] Hao X, Wang X H. A new sulfide capacity model for CaO–Al2O3–SiO2–MgO slags based on corrected optical basicity. Steel Res Int, 2016, 87(3): 359 doi: 10.1002/srin.201500065 [26] Ren Z S, Hu X J, Chou K C. Calculation and analysis of sulfide capacities for CaO–Al2O3–SiO2–MgO–TiO2 slags. J Iron Steel Res Int, 2013, 20(9): 21 doi: 10.1016/S1006-706X(13)60151-X [27] Du G P, Duan W M. Summary of industrial test on increasing MgO content in sinter of Baotou Steel. Sci Technol Baotou Steel (Group)Corp, 1997, 23(3): 107杜国萍, 段维民. 包钢烧结矿提高MgO含量工业试验总结. 包钢科技, 1997, 23(3):107 [28] Jiang X, Shen F M, Han H S, et al. Analysis and application of sectional control of w(MgO)/w(Al2O3) in blast furnace slag. Iron Steel, 2019, 54(10): 12姜鑫, 沈峰满, 韩宏松, 等. 高炉渣适宜镁铝比分段管控的分析与应用. 钢铁, 2019, 54(10):12 [29] Li T L, Sun C Y, Wang Q. Effects of w(MgO) and w(Al2O3) on softening-melting properties of mixed burden. Iron Steel, 2019, 54(4): 12李廷乐, 孙长余, 汪琦. w(MgO)和w(Al2O3)对混合炉料软熔性能的影响. 钢铁, 2019, 54(4):12 [30] Shen F M, Jiang X, Gao Q J, et al. Theoretical basis of suitable MgO/Al2O3 ratio in BF slag. Ironmaking, 2019, 38(2): 17沈峰满, 姜鑫, 高强健, 等. 高炉炉渣适宜镁铝比的理论基础. 炼铁, 2019, 38(2):17 [31] Jiang Z, Che Y M, Guo T Y, et al. Study on effect of Al2O3, MgO and binary basicity on stability of blast furnace slag. Angang Technol, 2019(1): 22 doi: 10.3969/j.issn.1006-4613.2019.01.006姜喆, 车玉满, 郭天永, 等. Al2O3、MgO和二元碱度对高炉渣稳定性影响研究. 鞍钢技术, 2019(1):22 doi: 10.3969/j.issn.1006-4613.2019.01.006 [32] Liu Z. Study on the Basic Performance of Blast Furnace Slag under the Baotou Steel Condition of Raw Materials [Dissertation]. Baotou: Inner Mongolia University of Science & Technology, 2020柳哲. 包钢原燃料条件下高炉渣的基础性能研究[学位论文]. 包头: 内蒙古科技大学, 2020 [33] Sun Z G. Effect of MgO on high aluminous slag stability. Iron Steel, 2014, 49(4): 18孙忠贵. 氧化镁对高铝渣稳定性影响. 钢铁, 2014, 49(4):18 [34] Zhang Y P, Zhang J L, Mao R, et al. Thermodynamic analysis on fusion temperature and melting characteristics of BF slag. J Iron Steel Res, 2014, 26(11): 11张亚鹏, 张建良, 毛瑞, 等. 高炉炉渣熔化温度及液相生成热力学分析. 钢铁研究学报, 2014, 26(11):11 [35] Chang Z Y, Jiao K X, Zhang J L, et al. Effect of Al2O3 and MgO on the enthalpy of molten slag and thermodynamic analysis. Energy Metall Ind, 2018, 37(4): 24 doi: 10.3969/j.issn.1001-1617.2018.04.005常治宇, 焦克新, 张建良, 等. Al2O3和MgO对炉渣热焓的影响及热力学分析. 冶金能源, 2018, 37(4):24 doi: 10.3969/j.issn.1001-1617.2018.04.005 -