• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炉渣成分对冶炼白云鄂博矿高炉渣脱硫和排碱能力的影响

张国成 王雅军 罗果萍

张国成, 王雅军, 罗果萍. 炉渣成分对冶炼白云鄂博矿高炉渣脱硫和排碱能力的影响[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.11.19.001
引用本文: 张国成, 王雅军, 罗果萍. 炉渣成分对冶炼白云鄂博矿高炉渣脱硫和排碱能力的影响[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.11.19.001
ZHANG Guo-cheng, WANG Ya-jun, LUO Guo-ping. Effect of slag composition on desulfurization and alkali removal ability of blast furnace slag for Bayan Obo iron ore[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.11.19.001
Citation: ZHANG Guo-cheng, WANG Ya-jun, LUO Guo-ping. Effect of slag composition on desulfurization and alkali removal ability of blast furnace slag for Bayan Obo iron ore[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.11.19.001

炉渣成分对冶炼白云鄂博矿高炉渣脱硫和排碱能力的影响

doi: 10.13374/j.issn2095-9389.2020.11.19.001
基金项目: 国家自然科学基金资助项目(51664045)
详细信息
    通讯作者:

    张国成,E-mail: 644942242@qq.com

    罗果萍,E-mail: luoguoping3@126.com

  • 中图分类号: TF046

Effect of slag composition on desulfurization and alkali removal ability of blast furnace slag for Bayan Obo iron ore

More Information
  • 摘要: 为了探明炉渣成分对冶炼白云鄂博矿高炉渣脱硫和排碱能力的影响,在实际高炉渣成分的基础上,通过正交试验和Factsage 7.1热力学模拟软件绘制不同组分高炉渣渣系五元伪三元相图,探究了自由碱度(Ro)、w(MgO)和w(Al2O3)对高炉渣脱硫、排碱能力的影响规律,并结合生产实际给出了适宜的炉渣自由碱度(Ro)、w(MgO)和w(Al2O3)的控制范围。研究表明: Ro是影响炉渣脱硫、排碱能力的最显著因素,Ro增加,渣中O2−浓度升高,促使硅氧复合阴离子Si−O解体,炉渣黏度减小,炉渣与金属液体之间的传质过程得到促进,使得S2−更容易向渣中迁移,炉渣脱硫的热力学和动力学条件改善,脱硫能力提高,适宜的Ro应控制在1.05~1.15;w(MgO)是影响炉渣脱硫能力的次要因素,w(MgO)增加,炉渣的流动性和稳定性提高,有利于改善炉渣脱硫的动力学条件,且可降低炉渣中(K2O+Na2O)的活度,提高排碱能力,适宜w(MgO)应控制在15%左右;w(Al2O3)是影响炉渣排碱能力的次要因素,w(Al2O3)增加,易生成镁铝尖晶石(MgAl2O4)等高熔点物质,使炉渣中的自由氧离子消耗量增多,不利于脱硫反应动力学条件的改善,虽然增加w(Al2O3)有益于排碱,但高w(Al2O3)不利于脱硫,且会导致炉渣黏度上升,适宜w(Al2O3)应控制在12%左右。

     

  • 图  1  高温熔渣脱硫实验装置

    Figure  1.  High-temperature slag viscosity measuring device

    图  2  高温熔渣排碱实验装置

    Figure  2.  Experimental device for alkali removal of high-temperature slag

    图  3  高炉渣脱硫能力主观效应图

    Figure  3.  Subjective effect diagram of blast furnace slag desulfurization

    图  4  高炉渣排碱实验结果主观效应图

    Figure  4.  Subjective effect diagram of alkali removal from blast furnace slag

    图  5  不同Ro条件下的CaO−SiO2−MgO−Al2O3−CaF2五元渣伪三元相图.(a) Ro=0.95; (b) Ro=1.05; (c) Ro=1.15; (d) Ro=1.25

    Figure  5.  Pseudoternary phase diagram of CaO−SiO2−MgO−Al2O3−CaF2 five-component slag with different Ro: (a) Ro=0.95; (b) Ro=1.05; (c) Ro=1.15; (d) Ro=1.25

    图  6  不同MgO含量的CaO−SiO2−MgO−Al2O3−CaF2五元渣伪三元相图. (a) w(MgO)=10%; (b) w(MgO)=12%; (c) w(MgO)=14%; (d) w(MgO)=16%

    Figure  6.  Pseudoternary phase diagram of CaO−SiO2−MgO−Al2O3−CaF2 five-component slag with different MgO content: (a) w(MgO)=10%; (b) w(MgO)=12%; (c) w(MgO)=14%; (d) w(MgO)=16%

    图  7  不同Al2O3含量的 CaO−SiO2−MgO−Al2O3−CaF2 五元渣伪三元相图. (a) w(Al2O3)=11%; (b) w(Al2O3)=13%; (c) w(Al2O3)=15%; (d) w(Al2O3)=17%

    Figure  7.  Pseudoternary phase diagram of CaO−SiO2−MgO−Al2O3−CaF2 five-component slag with different Al2O3 contents: (a) w(Al2O3)=11%; (b) w(Al2O3)=13%; (c) w(Al2O3)=15%; (d) w(Al2O3)=17%

    表  1  高炉渣实际化学成分

    Table  1.   Actual chemical composition of blast furnace slag

    w(CaO)/%w(SiO2)/%w(MgO)/%w(Al2O3)/%w(F)/%w(Na2O)/%w(K2O)/%w(S)/%Ro
    34.9335.709.7011.770.380.460.561.390.96
    下载: 导出CSV

    表  2  实验设计方案

    Table  2.   Experimental design scheme

    Experiment numberRow(MgO)/%w(Al2O3)/%
    1#C3(1.15)A1(10)B2(13)
    2#C1(0.95)A3(14)B4(17)
    3#C3(1.15)A2(12)B4(17)
    4#C1(0.95)A4(16)B2(13)
    5#C1(0.95)A1(10)B3(15)
    6#C3(1.15)A3(14)B1(11)
    7#C1(0.95)A2(12)B1(11)
    8#C3(1.15)A4(16)B3(15)
    9#C4(1.25)A1(10)B1(11)
    10#C2(1.05)A3(14)B3(15)
    11#C4(1.25)A2(12)B3(15)
    12#C2(1.05)A4(16)B1(11)
    13#C2(1.05)A1(10)B4(17)
    14#C4(1.25)A3(14)B2(13)
    15#C2(1.05)A2(12)B2(13)
    16#C4(1.25)A4(16)B4(17)
    Note: Ro is the free basicity, and the calculation formula is as follows: $ {R}_{\mathrm{O}}=[w\left(\mathrm{C}\mathrm{a}\mathrm{O}\right)-1.473\times w\left(\mathrm{F}\right)]/w\left({\mathrm{S}\mathrm{i}\mathrm{O}}_{2}\right) $, which is the representation method of basicity of fluorine-containing blast furnace slag in Bayan Obo iron ore.
    下载: 导出CSV

    表  3  合成渣实际化学成分

    Table  3.   Actual chemical composition of synthetic blast furnace slag

    Experiment numberw(CaO)/%w(SiO2)/%w(MgO)/%w(Al2O3)/%w(F)/%w(Na2O)/%w(K2O)/%w(S)/%Ro
    1#36.0330.449.8312.780.980.680.411.171.14
    2#31.0731.0513.2116.210.730.590.321.010.96
    3#34.6229.6512.6617.400.820.630.350.981.13
    4#32.5632.1614.7313.140.820.580.411.060.97
    5#33.2733.4910.4214.290.940.610.421.050.95
    6#35.9330.2213.6311.660.910.630.451.161.14
    7#33.8434.3312.7111.710.810.650.390.960.95
    8#32.7527.9816.3815.270.720.580.350.871.13
    9#38.9331.0210.6511.430.730.610.380.951.22
    10#32.5230.2514.5215.540.790.670.370.961.04
    11#35.8528.1612.6515.360.780.550.350.881.23
    12#33.1631.1115.9211.130.820.660.380.971.03
    13#32.8730.510.6317.240.800.650.410.971.04
    14#36.2228.7114.6813.570.730.560.350.861.22
    15#33.8731.712.7013.350.890.640.400.961.03
    16#32.8426.5916.3117.720.650.550.320.821.20
    下载: 导出CSV

    表  4  高炉渣脱硫实验结果极差分析

    Table  4.   Range analysis of experimental results of blast furnace slag desulfurization

    Experiment numberRow(MgO)w(Al2O3)w[S]w(S)Ls
    1#C3A1B20.0171.26074.120
    2#C1A3B40.0181.01056.110
    3#C3A2B40.0191.04476.550
    4#C1A4B20.0131.03079.230
    5#C1A1B30.0221.04047.270
    6#C3A3B10.0121.240103.330
    7#C1A2B10.0201.01050.500
    8#C3A4B30.0100.99199.100
    9#C4A1B10.0131.07082.310
    10#C2A3B30.0150.97865.200
    11#C4A2B30.0080.941117.630
    12#C2A4B10.0141.04074.290
    13#C2A1B40.0201.01050.500
    14#C4A3B20.0080.979122.380
    15#C2A2B20.0211.07050.950
    16#C4A4B40.0100.86786.700
    Factor level mean, K158.2863.5577.61
    Factor level mean, K260.2473.9181.67
    Factor level mean, K388.2886.7682.30
    Factor level mean, K4102.2684.8367.47
    Range, R43.9823.2114.84
    下载: 导出CSV

    表  5  高炉渣脱硫实验结果回归方差分析

    Table  5.   Variance analysis of experimental results of blast furnace slag desulfurization

    ParameterDfSSMSF valueSignificance F
    w(S)Regression analysis30.0002628.74×10−515.499490.000198
    Residual126.77×10−55.64×10−6
    Sum150.00033
    LsRegression analysis36573.1932191.06412.040540.000847
    Residual112001.713181.9739
    Sum148574.906
    Note: Df represents degree of freedom; SS represents regression sum of squares; MS represents mean square; F value represents analysis of variance test statistics.
    下载: 导出CSV

    表  6  高炉渣排碱实验结果

    Table  6.   Experimental results of alkali removal from blast furnace slag

    Experiment numberRow(MgO)w(Al2O3)w(K2O+Na2O)/%
    1#C3A1B20.608
    2#C1A3B40.680
    3#C3A2B40.295
    4#C1A4B20.881
    5#C1A1B30.826
    6#C3A3B10.650
    7#C1A2B10.638
    8#C3A4B30.158
    9#C4A1B10.212
    10#C2A3B30.203
    11#C4A2B30.097
    12#C2A4B10.971
    13#C2A1B40.42
    14#C4A3B20.346
    15#C2A2B20.580
    16#C4A4B40.129
    Factor level mean, K10.7560.5170.618
    Factor level mean, K20.5440.4030.604
    Factor level mean, K30.4280.4700.321
    Factor level mean, K40.1960.5350.381
    Range, R0.5600.1320.297
    下载: 导出CSV

    表  7  高炉渣排碱实验结果回归方差分析

    Table  7.   Variance analysis of experimental results of alkali removal from blast furnace slag

    ParameterDfSSMSF valueSignificance F
    Regression analysis30.8436710.2812248.9735470.00216
    Residual120.376070.031339
    Sum151.219742
    下载: 导出CSV
  • [1] Ba Z W, Li M, Zhang D L, et al. Blast furnace slag and its current using status in Baotou steel. Met Mater Metall Eng, 2018, 46(3): 45

    巴增文, 李梅, 张栋梁, 等. 包钢高炉渣及其应用现状. 金属材料与冶金工程, 2018, 46(3):45
    [2] Yang X. Comparison of Crust Evolution and Gold Deposits Genesis in the Bayan Obo-Alxa League Region, inner Mongolia [Dissertation]. Beijing: Chinese Academy of Geological Sciences, 2019

    杨轩. 内蒙古白云鄂博—阿拉善右旗地壳演化与金矿成因对比研究[学位论文]. 北京: 中国地质科学院, 2019
    [3] Hao Z P, Guo Z T, Lian H, et al. Experimental study on the feasibility of improving blast furnace's basicity of slag. Iron Steel Vanadium Titanium, 2016, 37(3): 98

    郝忠平, 郭卓团, 廉华, 等. 提高包钢高炉渣碱度的试验研究. 钢铁钒钛, 2016, 37(3):98
    [4] Lv X W, Yan Z M, Pang Z D, et al. Effect of Al2O3 on physicochemical properties and structure of blast furnace slag: Review. Iron Steel, 2020, 55(2): 1

    吕学伟, 严志明, 庞正德, 等. Al2O3对高炉渣物化性能和结构影响研究综述. 钢铁, 2020, 55(2):1
    [5] Luo G P, Sun G L, Zhang X F, et al. Desulphurization thermodynamics and kinetics of special BF slag at Baotou steel. J Iron Steel Res, 2007, 19(9): 9

    罗果萍, 孙国龙, 张学锋, 等. 包钢特殊矿冶炼高炉渣脱硫的热力学和动力学. 钢铁研究学报, 2007, 19(9):9
    [6] Liu Z, Wang Y C, Zhao F G, et al. Influence of binary basicity on physical properties of blast furnace slag of Baogang Group. J Iron Steel Res, 2019, 31(8): 696

    柳哲, 王艺慈, 赵凤光, 等. 碱度对包钢高炉渣物理性能的影响. 钢铁研究学报, 2019, 31(8):696
    [7] Pang Z D, Lv X W, Yan Z M, et al. Viscosity and free running temperature of ultra-high TiO2 bearing blast furnace slag. Iron Steel, 2020, 55(8): 181

    庞正德, 吕学伟, 严志明, 等. 超高TiO2高炉渣黏度及熔化性温度. 钢铁, 2020, 55(8):181
    [8] Yuan X, Zhang J L, Mao R, et al. Effect of w(MgO)/w(Al2O3) ratio on desulfurization capacity of BF slag. J Northeast Univ (Nat Sci), 2015, 36(11): 1609 doi: 10.12068/j.issn.1005-3026.2015.11.020

    袁骧, 张建良, 毛瑞, 等. 镁铝比对高炉渣脱硫能力的影响. 东北大学学报(自然科学版), 2015, 36(11):1609 doi: 10.12068/j.issn.1005-3026.2015.11.020
    [9] Lv Q, Li F M, Gu L N, et al. Experimental investigation on dealkalization and desulphurization of alkaliferous BF slag. J Northeast Univ (Nat Sci), 2007, 28(11): 1590 doi: 10.12068/j.issn.1005-3026.2007.11.019

    吕庆, 李福民, 顾林娜, 等. 含碱高炉渣排碱、脱硫能力的实验研究. 东北大学学报(自然科学版), 2007, 28(11):1590 doi: 10.12068/j.issn.1005-3026.2007.11.019
    [10] Zhang X S, Lv Q, Liu X J, et al. Optimal proportion of Ti, Mg and Al in BF slag. Iron Steel, 2015, 50(6): 8

    张旭升, 吕庆, 刘小杰, 等. 高炉炉渣中钛、镁、铝最优配比. 钢铁, 2015, 50(6):8
    [11] Xie H E. Effect of Ti(C, N) on desulfurization capacity of high-titanium-type blast furnace slag. China Metall, 2020, 30(1): 32

    谢洪恩. Ti(C, N)对高钛型高炉渣脱硫能力的影响. 中国冶金, 2020, 30(1):32
    [12] Yao J B, Liu W G, Ju J T, et al. Study on desulphurization capacity of CaO–SiO2–MgO–Al2O3–BaO slag systems. J Iron Steel Res, 2019, 31(3): 280

    姚嘉斌, 刘文果, 巨建涛, 等. CaO–SiO2–MgO–Al2O3–BaO渣系脱硫能力研究. 钢铁研究学报, 2019, 31(3):280
    [13] Zhang H S, Xu R Z, Zhang J L, et al. Study on desulfurization properties of blast furnace slag in Shougang Jingtang United Iron and Steel Co. ,Ltd. Res Iron Steel, 2016, 44(5): 14

    张贺顺, 许仁泽, 张建良, 等. 首钢京唐高炉渣脱硫性能研究. 钢铁研究, 2016, 44(5):14
    [14] Dong X X, Zhang S H, Lan C C, et al. Study on dealkalization capacity of BF slag with low titanium content. Iron Steel Vanadium Titanium, 2016, 37(6): 99 doi: 10.7513/j.issn.1004-7638.2016.06.018

    董晓旭, 张淑会, 兰臣臣, 等. 低钛高炉渣排碱能力研究. 钢铁钒钛, 2016, 37(6):99 doi: 10.7513/j.issn.1004-7638.2016.06.018
    [15] Wang P, Meng Q M, Long H M, et al. Influence of basicity and MgO on fluidity and desulfurization ability of high aluminum slag. High Temp Mater Process, 2016, 35(7): 669 doi: 10.1515/htmp-2015-0006
    [16] Wang Z Y, Zhang J L, An G, et al. Analysis on the oversize blast furnace desulfurization and a sulfide capacity prediction model based on congregated electron phase. Metall Mater Trans B, 2016, 47(1): 127 doi: 10.1007/s11663-015-0462-3
    [17] O Y K, Kong Y C, Sun Y Q, et al. Research development of alkali metal in blast furnace. J Hebei Polytech Univ (Nat Sci Ed), 2011, 33(1): 37

    欧阳坤, 孔延厂, 孙艳芹, 等. 高炉中碱金属的研究进展. 河北理工大学学报(自然科学版), 2011, 33(1):37
    [18] Zhu G Y, Zhang J L, Mao R, et al. Orthogonal experimental study on removal of alkalis through blast furnace slag. Res Iron Steel, 2013, 41(6): 19

    朱广跃, 张建良, 毛瑞, 等. 基于正交法的高炉渣排碱试验研究. 钢铁研究, 2013, 41(6):19
    [19] Sun Y Q, Wang H, Zhang Z T. Understanding the relationship between structure and thermophysical properties of CaO–SiO2–MgO–Al2O3 molten slags. Metall Mater Trans B, 2018, 49(2): 677 doi: 10.1007/s11663-018-1178-y
    [20] Wang D Q, Ma Z J, Chen H, et al. Thermodynamic analysis of reducing MgO content in slag for blast furnace A in Shougang. China Metall, 2018, 28(10): 5

    王冬青, 马泽军, 陈辉, 等. 首钢A高炉炉渣降低MgO的热力学分析. 中国冶金, 2018, 28(10):5
    [21] Taniguchi Y, Wang L J, Sano N, et al. Sulfide capacities of CaO–Al2O3–SiO2 slags in the temperature range 1673 K to 1773 K (1400 ℃ to 1500 ℃). Metall Mater Trans B, 2012, 43(3): 477 doi: 10.1007/s11663-011-9621-3
    [22] Liu W G, Xing X D, Zuo H B. Effect of TiO2 on viscosity and sulfide capacity of blast furnace slag containing Barium. ISIJ Int, 2020, 60(9): 1886 doi: 10.2355/isijinternational.ISIJINT-2019-627
    [23] Li Q H, Jia Y N, Zhang C J, et al. Viscosity-structure analysis of CaO–SiO2–MgO–Al2O3–Cr2O3 slags and application of Iida model. Iron Steel, 2019, 54(4): 99

    李秋寒, 贾雅楠, 张超杰, 等. CaO–SiO2–MgO–Al2O3–Cr2O3渣系黏度结构分析及Iida模型应用. 钢铁, 2019, 54(4):99
    [24] Liu Y, Li G Q, Wang Q, et al. Effect of slag composition on desulfurization during recycling rejected electrolytic manganese metal by electroslag remelting. Metall Res Technol, 2021, 118(2): 206 doi: 10.1051/metal/2021019
    [25] Hao X, Wang X H. A new sulfide capacity model for CaO–Al2O3–SiO2–MgO slags based on corrected optical basicity. Steel Res Int, 2016, 87(3): 359 doi: 10.1002/srin.201500065
    [26] Ren Z S, Hu X J, Chou K C. Calculation and analysis of sulfide capacities for CaO–Al2O3–SiO2–MgO–TiO2 slags. J Iron Steel Res Int, 2013, 20(9): 21 doi: 10.1016/S1006-706X(13)60151-X
    [27] Du G P, Duan W M. Summary of industrial test on increasing MgO content in sinter of Baotou Steel. Sci Technol Baotou Steel (Group)Corp, 1997, 23(3): 107

    杜国萍, 段维民. 包钢烧结矿提高MgO含量工业试验总结. 包钢科技, 1997, 23(3):107
    [28] Jiang X, Shen F M, Han H S, et al. Analysis and application of sectional control of w(MgO)/w(Al2O3) in blast furnace slag. Iron Steel, 2019, 54(10): 12

    姜鑫, 沈峰满, 韩宏松, 等. 高炉渣适宜镁铝比分段管控的分析与应用. 钢铁, 2019, 54(10):12
    [29] Li T L, Sun C Y, Wang Q. Effects of w(MgO) and w(Al2O3) on softening-melting properties of mixed burden. Iron Steel, 2019, 54(4): 12

    李廷乐, 孙长余, 汪琦. w(MgO)和w(Al2O3)对混合炉料软熔性能的影响. 钢铁, 2019, 54(4):12
    [30] Shen F M, Jiang X, Gao Q J, et al. Theoretical basis of suitable MgO/Al2O3 ratio in BF slag. Ironmaking, 2019, 38(2): 17

    沈峰满, 姜鑫, 高强健, 等. 高炉炉渣适宜镁铝比的理论基础. 炼铁, 2019, 38(2):17
    [31] Jiang Z, Che Y M, Guo T Y, et al. Study on effect of Al2O3, MgO and binary basicity on stability of blast furnace slag. Angang Technol, 2019(1): 22 doi: 10.3969/j.issn.1006-4613.2019.01.006

    姜喆, 车玉满, 郭天永, 等. Al2O3、MgO和二元碱度对高炉渣稳定性影响研究. 鞍钢技术, 2019(1):22 doi: 10.3969/j.issn.1006-4613.2019.01.006
    [32] Liu Z. Study on the Basic Performance of Blast Furnace Slag under the Baotou Steel Condition of Raw Materials [Dissertation]. Baotou: Inner Mongolia University of Science & Technology, 2020

    柳哲. 包钢原燃料条件下高炉渣的基础性能研究[学位论文]. 包头: 内蒙古科技大学, 2020
    [33] Sun Z G. Effect of MgO on high aluminous slag stability. Iron Steel, 2014, 49(4): 18

    孙忠贵. 氧化镁对高铝渣稳定性影响. 钢铁, 2014, 49(4):18
    [34] Zhang Y P, Zhang J L, Mao R, et al. Thermodynamic analysis on fusion temperature and melting characteristics of BF slag. J Iron Steel Res, 2014, 26(11): 11

    张亚鹏, 张建良, 毛瑞, 等. 高炉炉渣熔化温度及液相生成热力学分析. 钢铁研究学报, 2014, 26(11):11
    [35] Chang Z Y, Jiao K X, Zhang J L, et al. Effect of Al2O3 and MgO on the enthalpy of molten slag and thermodynamic analysis. Energy Metall Ind, 2018, 37(4): 24 doi: 10.3969/j.issn.1001-1617.2018.04.005

    常治宇, 焦克新, 张建良, 等. Al2O3和MgO对炉渣热焓的影响及热力学分析. 冶金能源, 2018, 37(4):24 doi: 10.3969/j.issn.1001-1617.2018.04.005
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  111
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 网络出版日期:  2021-06-18

目录

    /

    返回文章
    返回