• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近距离煤层工作面煤柱合理留设与巷道围岩控制技术

程辉 赵洪宝 张欢 徐建峰 秦逢缘

程辉, 赵洪宝, 张欢, 徐建峰, 秦逢缘. 近距离煤层工作面煤柱合理留设与巷道围岩控制技术[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.11.25.001
引用本文: 程辉, 赵洪宝, 张欢, 徐建峰, 秦逢缘. 近距离煤层工作面煤柱合理留设与巷道围岩控制技术[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.11.25.001
CHENG Hui, ZHAO Hong-bao, ZHANG Huan, XU Jian-feng, QIN Feng-yuan. Reasonable coal pillar setting and roadway surrounding rock control technology in close-distance coal seam working face[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.11.25.001
Citation: CHENG Hui, ZHAO Hong-bao, ZHANG Huan, XU Jian-feng, QIN Feng-yuan. Reasonable coal pillar setting and roadway surrounding rock control technology in close-distance coal seam working face[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.11.25.001

近距离煤层工作面煤柱合理留设与巷道围岩控制技术

doi: 10.13374/j.issn2095-9389.2020.11.25.001
基金项目: 煤炭开采水资源保护与利用国家重点实验室2020年开放基金课题资助项目(GJNY-20-113-18);越崎杰出学者计划资助项目(800015Z1179);国家自然科学基金青年科学基金资助项目(52004170);中央高校基本科研业务费研究生科研创新能力提升资助项目(2020YJSNY07)
详细信息
    通讯作者:

    E-mail: zhanghuan@tyut.edu.cn

  • 中图分类号: TD322

Reasonable coal pillar setting and roadway surrounding rock control technology in close-distance coal seam working face

More Information
  • 摘要: 为探究近距离煤层工作面煤柱合理留设宽度以及回采巷道围岩控制技术,以回坡底煤矿近距离煤层开采为工程背景,通过数值模拟、理论分析、现场实践等技术手段对不同宽度条件下煤柱破坏演化过程、影响因素、底板破坏范围以及11号煤层回采巷道围岩控制技术进行了深入研究。研究结果表明:(1)煤柱在预留煤柱时期、区段煤柱时期、保护煤柱时期、孤岛煤柱时期四个阶段过程中,煤柱破坏范围逐渐增大;煤柱弹性核占比均随煤柱宽度的增加而增加,本煤层回采巷道随煤柱宽度的增加从非对称性破坏逐渐演化为对称性破坏。煤柱破坏宽度与煤层倾角、黏聚力、煤柱宽度、内摩擦角和泊松比等因素成反比关系,只与埋深成正比关系。(2)随着煤柱宽度增大,煤柱底板破坏宽度与深度会发生变化,且底板破坏集中在煤柱边缘侧,煤柱正下方底板破坏区域较小。(3)煤柱应力集中作用致底板下方最大主应力发生偏转,底板任意一点与煤柱中心线的距离越大,最大主应力偏转角度越小;随着11号煤层巷道与煤柱边缘距离的增大,巷道围岩塑性区由倾斜的“X”形分布转变为倾斜的“8”形分布,再转化为倾斜的“O”形分布,最终转化为椭圆形分布;离煤柱距离较近时,巷道往往出现非对称性破坏,支护也要采取非对称支护形式。

     

  • 图  1  巷道开挖、工作面回采与煤柱演化过程. (a)预留煤柱时期; (b)区段煤柱时期; (c)保护煤柱时期; (d)孤岛煤柱时期

    Figure  1.  Roadway excavation, working face mining, and coal pillar evolution process: (a) period of the reserved coal pillar; (b) period of the section coal pillar; (c) period of the protection coal pillar; (d) period of the isolated coal pillar

    图  2  数值模拟几何模型

    Figure  2.  Geometric model of numerical simulation

    图  3  各阶段煤柱破坏情况. (a) 区段煤柱; (b)保护煤柱; (c)孤岛煤柱

    Figure  3.  Coal pillar failure in each stage: (a) section coal pillar; (b) protective coal pillar; (b) isolated coal pillar

    图  4  不同煤柱宽度弹性核占比分布与塑性区结果

    Figure  4.  Distribution of the elastic core proportion and results of the plastic zone in different coal pillar widths

    图  5  10-1032巷断面支护(单位:mm)

    Figure  5.  10-1032 roadway section support (Unit: mm)

    图  6  煤柱破坏分析简化模型. (a)煤柱两侧应力分布; (b)应力恢复区简化模型

    Figure  6.  Simplified model of the coal pillar failure analysis: (a) stress distribution on two sides of the coal pillar; (b) simplified model of the stress recovery zone

    图  7  煤柱破坏因素分析. (a)煤层倾角; (b)黏聚力; (c)煤柱宽度; (d)内摩擦角; (e)泊松比; (f)埋深

    Figure  7.  Analysis factors of the coal pillar failure: (a) coal seam dip angle; (b) cohesion; (c) coal pillar width; (d) internal friction angle; (e) Poisson’s ratio; (f) buried depth

    图  8  不同宽度煤柱支承压力演化过程. (a)5 m煤柱; (b)10 m煤柱; (c)15 m煤柱; (d)20 m煤柱; (e)25 m煤柱

    Figure  8.  Evolution process of the abutment pressure of the coal pillar with different widths: (a) 5 m coal pillar; (b) 10 m coal pillar; (c) 15 m coal pillar; (d) 20 m coal pillar; (e) 25 m coal pillar

    图  9  煤柱下方底板应力求解力学模型

    Figure  9.  Mechanical model of the floor under the coal pillar

    图  10  煤柱下方底板破坏区域分布. (a)15 m煤柱; (b)20 m煤柱; (c)25 m煤柱

    Figure  10.  Distribution of the floor failure area under the coal pillar: (a) 15 m coal pillar; (b) 20 m coal pillar; (c) 25 m coal pillar

    图  11  煤柱下方底板最大主应力方向矢量图

    Figure  11.  Vector diagram of the maximum principal stress direction of the floor under the coal pillar

    图  12  距煤柱边缘不同距离下巷道围岩塑性区分布形态. (a)4 m; (b)6 m; (c)8 m; (d)10 m; (e)12 m; (f)14 m; (g)16 m; (h)18 m; (i)30 m

    Figure  12.  Plastic zone distribution of the roadway surrounding rock in different distances from the coal pillar edge: (a) 4 m; (b) 6 m; (c) 8 m; (d) 10 m; (e) 12 m; (f) 14 m; (g) 16 m; (h) 18 m; (i) 30 m

    图  13  11-1021巷围岩破坏情况. (a)靠近煤柱侧巷帮; (b)巷道顶板; (c)远离煤柱侧巷帮; (d)靠近煤柱侧顶板; (e)远离煤柱侧顶板; (f)靠近煤柱侧底板钻孔; (g)远离煤柱侧底板钻孔

    Figure  13.  Surrounding rock failure of 11-1021 roadway: (a) roadway side near the coal pillar; (b) roadway roof; (c) roadway side far away from coal pillar; (d) roof near the coal pillar side; (e) roof far away from the coal pillar; (f) floor drilling hole near the coal pillar side; (g) floor drilling hole away from pillar side

    图  14  11-1021巷围岩支护优化(单位:mm)

    Figure  14.  11-1021 roadway surrounding support optimization (Unit: mm)

    表  1  岩层物理力学参数

    Table  1.   Rock’s physical and mechanical parameters

    Rock stratumThickness /mDensity/
    (kg·m−3)
    Bulk/
    GPa
    Shear/
    GPa
    Cohesion/
    MPa
    Cohesion /MPaAngle of internal friction /(°)
    Overlying strata46246010.838.137.85.438
    Siltstone826805.64.25.21.429
    K2 limestone8.928005.574.535.43.827
    No.9 coal114002.080.541.20.6420
    Mudstone2.326002.911.522.132
    No.10 coal2.6514202.501.722121
    Siltstone2.8226805.64.25.11.429
    Mudstone3.824616.083.4730.628
    No.11 coal3.214232.501.722.41.229
    Aluminous mudstone0.821002.61.82.65225
    Mudstone324616.083.4730.628
    Siltstone2.5326805.64.25.11.429
    Aluminous mudstone329812.1712.40.925
    Quartz sandstone226503.051.924.31.627
    Siltstone1026805.574.25.11.429
    Overlying strata3526805.64.185.21.530
    下载: 导出CSV
  • [1] Yu Y, Shen W L, Gao J. Deformation mechanism and control of lower seam roadway of contiguous seams. J Min Saf Eng, 2016, 33(1): 49

    于洋, 神文龙, 高杰. 极近距离煤层下位巷道变形机理及控制. 采矿与安全工程学报, 2016, 33(1):49
    [2] Hao D Y, Wu Y Z, Chen H J, et al. Instability mechanism and prevention technology of roadway in close distance and extra thick coal seam under goaf. J China Coal Soc, 2019, 44(9): 2682

    郝登云, 吴拥政, 陈海俊, 等. 采空区下近距离特厚煤层回采巷道失稳机理及其控制. 煤炭学报, 2019, 44(9):2682
    [3] Cao S G, Zou D J, Bai Y J, et al. Surrounding rock control of mining roadway in the thin coal seam group with short distance and “three soft”. J Min Saf Eng, 2011, 28(4): 524 doi: 10.3969/j.issn.1673-3363.2011.04.005

    曹树刚, 邹德均, 白燕杰, 等. 近距离“三软”薄煤层群回采巷道围岩控制. 采矿与安全工程学报, 2011, 28(4):524 doi: 10.3969/j.issn.1673-3363.2011.04.005
    [4] Zheng B S, Xie W B, Dou L M, et al. A surrounding rock controlling technique of roadway affected by dynamic stress in “islet face” of adjacent coal seam. J China Univ Min Technol, 2006, 35(4): 483 doi: 10.3321/j.issn:1000-1964.2006.04.012

    郑百生, 谢文兵, 窦林名, 等. 近距离孤岛工作面动压影响巷道围岩控制. 中国矿业大学学报, 2006, 35(4):483 doi: 10.3321/j.issn:1000-1964.2006.04.012
    [5] Peng G Y, Gao M Z, Lü Y C, et al. Investigation on mining mechanics behavior of deep close distance seam group. J China Coal Soc, 2019, 44(7): 1971

    彭高友, 高明忠, 吕有厂, 等. 深部近距离煤层群采动力学行为探索. 煤炭学报, 2019, 44(7):1971
    [6] Wang L F, Chang Z C, Yang Z B, et al. Combined support technology of roadway under mined gob of ultra-distance seams in deep mine. J Min Saf Eng, 2018, 35(4): 686

    王龙飞, 常泽超, 杨战标, 等. 深井近距离煤层群采空区下回采巷道联合支护技术. 采矿与安全工程学报, 2018, 35(4):686
    [7] Fang X Q, Guo M J, Lu Z Q. Instability mechanism and prevention of roadway under close-distance seam group mining. Chin J Rock Mech Eng, 2009, 28(10): 2059 doi: 10.3321/j.issn:1000-6915.2009.10.013

    方新秋, 郭敏江, 吕志强. 近距离煤层群回采巷道失稳机制及其防治. 岩石力学与工程学报, 2009, 28(10):2059 doi: 10.3321/j.issn:1000-6915.2009.10.013
    [8] Lu Y, Gao J, Liu C Y, et al. Study on the optimal layout of roadways of contiguous seams by simultaneous mining. J Min Saf Eng, 2012, 29(6): 797

    鲁岩, 高杰, 刘长友, 等. 近距煤层同采巷道优化布置研究. 采矿与安全工程学报, 2012, 29(6):797
    [9] Ma Z Q, Jiang Y D, Yang Y M, et al. Floor roadway stability in repeated mining of close distance coal seams in Luling coal mine. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 3320

    马振乾, 姜耀东, 杨英明, 等. 芦岭矿近距离煤层重复开采下底板巷道稳定性研究. 岩石力学与工程学报, 2015, 34(增刊1): 3320
    [10] Wang R, Yan S, Bai J B, et al. Theoretical analysis of the destabilization mechanism and the damaged width of rib pillar in open-pit highwall mining. Rock Soil Mech, 2019, 40(8): 3167

    王瑞, 闫帅, 柏建彪, 等. 端帮开采下煤柱破坏宽度计算及失稳机制研究. 岩土力学, 2019, 40(8):3167
    [11] Xu Z L. A Concise Course in Elasticity. 4th Ed. Beijing: Higher Education Press, 2013

    徐芝纶. 弹性力学简明教程. 4版. 北京: 高等教育出版社, 2013
    [12] Meng X R, Xu C H, Gao Z N, et al. Stress distribution and damage mechanism of mining floor. J China Coal Soc, 2010, 35(11): 1832

    孟祥瑞, 徐铖辉, 高召宁, 等. 采场底板应力分布及破坏机理. 煤炭学报, 2010, 35(11):1832
    [13] Zhu S Y, Jiang Z Q, Yao P, et al. Application of analytic method in calculating floor stress of a working face. J Min Saf Eng, 2007, 24(2): 191 doi: 10.3969/j.issn.1673-3363.2007.02.015

    朱术云, 姜振泉, 姚普, 等. 采场底板岩层应力的解析法计算及应用. 采矿与安全工程学报, 2007, 24(2):191 doi: 10.3969/j.issn.1673-3363.2007.02.015
    [14] Lu H F, Yao D X. Stress distribution and failure depths of layered rock mass of mining floor. Chin J Rock Mech Eng, 2014, 33(10): 2030

    鲁海峰, 姚多喜. 采动底板层状岩体应力分布规律及破坏深度研究. 岩石力学与工程学报, 2014, 33(10):2030
    [15] Lu H F, Yao D X, Liang X Y, et al. Analytical solution of stress in a transversely isotropic floor rock mass under mining. Chin J Undergr Space Eng, 2013, 9(5): 1050

    鲁海峰, 姚多喜, 梁修雨, 等. 采动底板横观各向同性岩体应力解析解. 地下空间与工程学报, 2013, 9(5):1050
    [16] Song W C, Liang Z Z, Liu W T, et al. Theoretical analysis and experimental investigation on failure characteristics and stability of stope floors. Chin J Rock Mech Eng, 2019, 38(11): 2208

    宋文成, 梁正召, 刘伟韬, 等. 采场底板破坏特征及稳定性理论分析与试验研究. 岩石力学与工程学报, 2019, 38(11):2208
    [17] Zhang H L, Wang L G. Computation of mining induced floor additional stress and its application. J Min Saf Eng, 2011, 28(2): 288 doi: 10.3969/j.issn.1673-3363.2011.02.023

    张华磊, 王连国. 采动底板附加应力计算及其应用研究. 采矿与安全工程学报, 2011, 28(2):288 doi: 10.3969/j.issn.1673-3363.2011.02.023
    [18] Peng W H, Dong Z Z, Li S C. Boundary integral formula of semi-plane elasticity problem and its application. J China Univ Min Technol, 2005, 34(3): 400 doi: 10.3321/j.issn:1000-1964.2005.03.028

    彭维红, 董正筑, 李顺才. 半平面体弹性问题的边界积分公式及应用. 中国矿业大学学报, 2005, 34(3):400 doi: 10.3321/j.issn:1000-1964.2005.03.028
    [19] Wang M, Niu Y H, Yu Y J, et al. Experimental research on characteristics of deformation and failure of surrounding rock of roadway in deep mine under influence of principal stress evolution. Chin J Geotech Eng, 2016, 38(2): 237 doi: 10.11779/CJGE201602006

    王猛, 牛誉贺, 于永江, 等. 主应力演化影响下的深部巷道围岩变形破坏特征试验研究. 岩土工程学报, 2016, 38(2):237 doi: 10.11779/CJGE201602006
    [20] Yin G Z, Lu J, Li X, et al. Stability and plastic zone characteristics of surrounding rock under true triaxial stress conditions. J China Coal Soc, 2018, 43(10): 2709

    尹光志, 鲁俊, 李星, 等. 真三轴应力条件下钻孔围岩稳定性及塑性区特性. 煤炭学报, 2018, 43(10):2709
    [21] Yin G Z, Lu J, Zhang D M, et al. Study on plastic zone and permeability-increasing radius of borehole surrounding rock under true triaxial stress conditions. Rock Soil Mech, 2019, 40(Suppl 1): 1

    尹光志, 鲁俊, 张东明, 等. 真三轴应力条件下钻孔围岩塑性区及增透半径研究. 岩土力学, 2019, 40(增刊1): 1
    [22] Zhao H B, Cheng H, Li J Y, et al. Study on asymmetric deformation mechanism of surrounding rock of roadway under the effect of isolated coal pillar. Chin J Rock Mech Eng, 2020, 39(Suppl 1): 2771

    赵洪宝, 程辉, 李金雨, 等. 孤岛煤柱影响下巷道围岩非对称性变形机制研究. 岩石力学与工程学报, 2020, 39(增刊1): 2771
    [23] Zhang G, Wu J G, Yang L J. Determination of the sealing length of upward long crossing boreholes for gas drainage under unequal stress fields. Chin J Rock Mech Eng, 2018, 37(Suppl 1): 3422

    章光, 吴金刚, 杨龙杰. 非等压应力场上向长距离穿层瓦斯抽采钻孔密封长度研究. 岩石力学与工程学报, 2018, 37(增刊1): 3422
    [24] Wang W J, Dong E Y, Yuan C. Boundary equation of plastic zone of circular roadway in non-axisymmetric stress and its application. J China Coal Soc, 2019, 44(1): 105

    王卫军, 董恩远, 袁超. 非等压圆形巷道围岩塑性区边界方程及应用. 煤炭学报, 2019, 44(1):105
    [25] Liu L Y, Ji H G, Wang T, et al. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress. Chin J Eng, 2020, 42(6): 715

    刘力源, 纪洪广, 王涛, 等. 高渗透压和不对称围压作用下深竖井围岩损伤破裂机理. 工程科学学报, 2020, 42(6):715
    [26] Ma N J, Guo X F, Zhao Z Q, et al. Occurrence mechanisms and judging criterion on circular tunnel butterfly rock burst in homogeneous medium. J China Coal Soc, 2016, 41(11): 2679

    马念杰, 郭晓菲, 赵志强, 等. 均质圆形巷道蝶型冲击地压发生机理及其判定准则. 煤炭学报, 2016, 41(11):2679
    [27] Zhao H B, Cheng H, Ji D L, et al. Study of the mechanism and evolution law of unsymmetrical failure of the mining roadway in close distance coal seam. Chin J Geotech Eng, 2021, 50(6): 1029

    赵洪宝, 程辉, 吉东亮, 等. 近距离煤层回采巷道非对称性破坏机理与演化规律研究. 中国矿业大学学报, 2021, 50(6):1029
    [28] Zhao H B, Cheng H, Wang L, et al. Distribution characteristics of deviatoric stress field and failure law of roadway surrounding rock under non-hydrostatic pressure. J China Coal Soc, 2021, 46(2): 370

    赵洪宝, 程辉, 王磊, 等. 非静水压力条件下巷道围岩偏应力场分布特征与围岩破坏规律. 煤炭学报, 2021, 46(2):370
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  58
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-25
  • 网络出版日期:  2021-06-18

目录

    /

    返回文章
    返回