-
摘要: 研究了生物质复合团块在高炉中的反应行为,该复合团块主要成分(质量分数)为:11.1% C、72.7% Fe3O4、11.25% FeO、0.77% Fe和4.67% 脉石。并对高炉环境下复合团块的反应行为进行了建模,通过高炉气氛下的等温动力学实验确定模型参数并进行了模型验证。进一步,结合模型模拟,模拟高炉环境的实验和团块微观结构分析,对模拟高炉条件下和实际高炉条件下团块的反应行为进行了分析。研究结果表明:模拟高炉条件下,在60 min (973 K) 到120 min (1273 K) 期间, 团块的微观结构发生明显变化,其微观结构由渣相网络结构向金属铁网络结构转变。在实际高炉中,复合团块的反应进程主要包括三个阶段:团块的高炉煤气还原(473~853 K)、团块的高炉煤气还原和部分自还原(853~953 K)以及团块的完全自还原(953~1150 K)。在团块自还原参与阶段,与烧结矿相比,团块内氧化铁还原速率更快;与焦炭相比,团块内生物质炭气化速率更高。同时,在此阶段,团块有提高高炉煤气利用率和降低高炉热储备区温度的作用。Abstract: Blast furnace (BF) ironmaking is considered to be the most popular technology to meet the increasing steel demand worldwide, but it is responsible for the most CO2 emissions in the blast furnace-basic oxygen furnace production process. The utilization of biomass/biochar in BF ironmaking is an effective countermeasure to reduce its CO2 emission, as biomass/biochar is a renewable carbon source and environment neutron. Charging the biochar composite briquette (BCB) is a convenient method to introduce biomass/biochar into BF. The present research investigates the reaction behavior of the BCB in the BF. The BCB for the BF was prepared using cold briquetting followed by low-temperature heat treatment. The BCB was composed of 11.1% carbon, 72.7% magnetite, 11.25% wustite, 0.77% metallic iron, and 4.67% gangue (all in mass fraction). The BCB reaction model in the BF was developed considering the step-wise gaseous reduction of iron-oxide particles, CO2 gasification of biochar particles, internal gas diffusion in the BCB, and mass transfer between the BCB and the environment. Isothermal BCB reaction tests were conducted for model validation. Using the model, the changes of the BCB iron-oxide reduction fraction and biochar conversion rate and the BCB microstructure evolution under simulated BF conditions were analyzed. The model was also applied to predict the change of the BCB iron-oxide reduction fraction, change of the BCB biochar conversion, change of the BCB CO generating rate, and change of the BCB CO2 generation rate along a solid flowing path near the mid-radius in an actual BF. Results showed that under simulated BF conditions, the BCB underwent fast self-reduction and structure changes (forming low-melting compounds and transforming from the slag matrix to the iron network) from 60 min (973 K) to 120 min (1273 K). In an actual BF, the BCB reaction route is mainly divided into three stages: (1) reduction by BF gas (473–853 K), (2) reduction by the BF gas and partial self-reduction (853–953 K), and (3) full self-reduction (953–1150 K). In the stages involving BCB self-reduction, the iron oxide in the BCB reduces faster than the sinter, and the biochar gasifies faster than the coke. Moreover, in these stages, the BCB has the functions of increasing the BF gas utilization efficiency and lowering the temperature level of the BF thermal reserve zone.
-
Key words:
- biochar /
- composite briquette /
- blast furnace /
- reaction model /
- reaction behavior
-
图 13 实际高炉中的生物质炭复合团块反应行为.(a)沿路径的还原分数变化;(b)沿路径的生物炭转化率变化;(c)沿路径的CO和CO2生成速率变化;(d)在1150至1168 K温度下CO和CO2的生成速率变化
Figure 13. BCB reaction behavior in the BF: (a) change in reduction fraction along the path; (b) change in biochar conversion along the path; (c) changes in generation rates of CO and CO2 along the path; (d) changes in generation rates of CO and CO2 from 1150 to 1168 K
表 1 制备用生物炭工业分析(质量分数)
Table 1. Proximate analysis of the prepared biochar fines
% Volatile Moisture Fixed carbon Ash 3.91 2.95 88.23 4.91 表 2 等温团块动力学实验方案
Table 2. Scenarios for isothermal biochar composite briquette ( BCB) kinetic tests
Scenario Temperature/K CO2 volume fraction/% CO volume fraction /% N2 volume fraction /% Ⅰ 1073 20 30 50 Ⅱ 1173 15 35 50 Ⅲ 1273 10 40 50 表 3 模型中涉及的反应
Table 3. Reactions involved in the model
No. Reaction Reaction rate/(mol·m–3·s–1) Ref. 1 $ {\text{3 F}}{{\text{e}}_{\text{2}}}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = 2{\text{ F}}{{\text{e}}_{\text{3}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) + {\text{C}}{{\text{O}}_{\text{2}}}({\text{g}}) $ ${R_i} = \dfrac{ {({P_{ {\text{CO} } } } - {P_{ {\text{C} }{ {\text{O} }_{\text{2} } } } }/{K_i})/(8.314T)} }{ {({K_i}/({k_i}(1 + {K_i}))} }{(1 - {f_i})^{2/3} }{a_ {\text{gs} } }$(i=1,2,3), ${K_1} = \exp ({\text{7} }{\text{.255 + 3720} }/T),$ ${k_1} = \exp ( - 1.445 - 6038/T),$ ${K_2} = \exp (5.289 - 4711/T),$ ${k_{\text{2}}} = \exp ( - {\text{2}}{\text{.515}} - {\text{4811}}/T),$ ${K_3} = \exp ( - 3.127 + 2879.63/T),$ ${k_3} = \exp (0.805 - 7385/T)$ [24,27] 2 $ {\text{F}}{{\text{e}}_{\text{3}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = 3{\text{ FeO}}\left( {\text{s}} \right){\text{ + C}}{{\text{O}}_{\text{2}}}({\text{g}}) $ 3 $ {\text{FeO}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = {\text{Fe}}\left( {\text{s}} \right){\text{ + C}}{{\text{O}}_{\text{2}}}({\text{g}}) $ 4 $ {\text{C}}\left( {\text{s}} \right) + {\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) = 2{\text{ CO(g)}} $ $\begin{gathered} {R_4}{\text{ = } }{\rho _{ {\text{C,0} } } }{k_{\text{4} } }{\left( { {\text{1} } - {f_{\text{4} } } } \right)^{ {\text{2/3} } } }{\text{(} }{P_{ {\text{C} }{ {\text{O} }_{\text{2} } } } }{\text{/1} }{\text{.01} } \times {\text{1} }{ {\text{0} }^{\text{5} } }{\text{)/} }{M_{\text{C} } }_{\text{, } } \hfill \\ {k_4} = 1{\text{5} }00\exp ( - 13{\text{1} }00{\text{0} }/RT) \hfill \\ \end{gathered}$ [28] 表 4 生物质炭复合团块的矿物组成 (质量分数)
Table 4. Mineralogical composition of BCB
% Carbon Magnetite Wustite Metallic iron Gangue 11.10 72.21 11.25 0.77 4.67 表 5 不同的实验方案下团块的反应参数和实验测量值及模型预测值
Table 5. Measured and model-predicted parameters of the BCB reduced under different scenarios
Scenario BCB reduction fraction BCB biochar conversion Measurement Model prediction Measurement Model prediction I 0.14 0.16 0.10 0.20 II 0.44 0.49 0.33 0.53 III 0.85 0.90 0.86 0.94 -
参考文献
[1] Cai J J. Air consumption and waste gas emission of steel industry. Iron Steel, 2019, 54(4): 1蔡九菊. 钢铁工业的空气消耗与废气排放. 钢铁, 2019, 54(4):1 [2] Ariyama T, Sato M. Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works. ISIJ Int, 2006, 46(12): 1736 doi: 10.2355/isijinternational.46.1736 [3] An R Y, Yu B Y, Li R, et al. Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Appl Energy, 2018, 226: 862 doi: 10.1016/j.apenergy.2018.06.044 [4] Wang P, Jiang Z, Zhang X, et al. Long-term scenario forecast of production routes, energy consumption and emissions for Chinese steel industry. J Univ Sci Technol Beijing, 2014, 36(12): 1683汪鹏, 姜泽毅, 张欣欣, 等. 中国钢铁工业流程结构、能耗和排放长期情景预测. 北京科技大学学报, 2014, 36(12):1683 [5] Zhang W L. Current situation and future technical prospect of blast furnace ironmaking in China. China Met Bull, 2019(2): 10 doi: 10.3969/j.issn.1672-1667.2019.02.005张文来. 中国高炉炼铁现状及未来技术展望. 中国金属通报, 2019(2):10 doi: 10.3969/j.issn.1672-1667.2019.02.005 [6] Zhao J, Zuo H B, Wang Y J, et al. Review of green and low-carbon ironmaking technology. Ironmak Steelmak, 2020, 47(3): 296 doi: 10.1080/03019233.2019.1639029 [7] Florentino-Madiedo L, Díaz-Faes E, Barriocanal C. Reactivity of biomass containing briquettes for metallurgical coke production. Fuel Process Technol, 2019, 193: 212 doi: 10.1016/j.fuproc.2019.05.017 [8] Cardona L M V, Narita C Y, Takano C, et al. Characterisation of coal-charcoal composite biocoke as a sustainable alternative for ironmaking. Can Metall Q, 2017, 56(2): 190 doi: 10.1080/00084433.2017.1299342 [9] Zandi M, Martinez-Pacheco M, Fray T A T. Biomass for iron ore sintering. Miner Eng, 2010, 23(14): 1139 doi: 10.1016/j.mineng.2010.07.010 [10] Kieush L, Yaholnyk M, Boyko M, et al. Study of biomass utilisation in the iron ore sintering. Acta Metall Slovaca, 2019, 25(1): 55 doi: 10.12776/ams.v1i1.1225 [11] Liu Y R, Shen Y S. CFD study of charcoal combustion in a simulated ironmaking blast furnace. Fuel Process Technol, 2019, 191: 152 doi: 10.1016/j.fuproc.2019.04.004 [12] Wang C, Mellin P, Lövgren J, et al. Biomass as blast furnace injectant-Considering availability, pretreatment and deployment in the Swedish steel industry. Energy Convers Manag, 2015, 102: 217 doi: 10.1016/j.enconman.2015.04.013 [13] Mathieson J G, Rogers H, Somerville M A, et al. Reducing net CO2 emissions using charcoal as a blast furnace tuyere injectant. ISIJ Int, 2012, 52(8): 1489 doi: 10.2355/isijinternational.52.1489 [14] Ahmed H M, Viswanathan N, Bjorkman B. Composite pellets-A potential raw material for iron-making. Steel Res Int, 2014, 85(3): 293 doi: 10.1002/srin.201300072 [15] Tanaka Y, Ueno T, Okumura K, et al. Reaction behavior of coal rich composite iron ore hot briquettes under load at high temperatures until 1400℃. ISIJ Int, 2011, 51(8): 1240 doi: 10.2355/isijinternational.51.1240 [16] Mizoguchi H, Suzuki H, Hayashi S. Influence of mixing coal composite iron ore hot briquettes on blast furnace simulated reaction behavior in a packed mixed bed. ISIJ Int, 2011, 51(8): 1247 doi: 10.2355/isijinternational.51.1247 [17] Wu K, Qi Y H, Zhao J W, et al. Reduction and strength of after reduction of cooled pellet contain carbon. J Univ Sci Technol Beijing, 2000, 22(2): 101 doi: 10.3321/j.issn:1001-053X.2000.02.002吴铿, 齐渊洪, 赵继伟, 等. 含碳球团的还原性和还原冷却后的强度. 北京科技大学学报, 2000, 22(2):101 doi: 10.3321/j.issn:1001-053X.2000.02.002 [18] Wang H T, Chu M S, Zhao W, et al. Influence of iron ore addition on metallurgical reaction behavior of iron coke hot briquette. Metall Mater Trans B, 2019, 50(1): 324 doi: 10.1007/s11663-018-1481-7 [19] Kasai A, Toyota H, Nozawa K, et al. Reduction of reducing agent rate in blast furnace operation by carbon composite iron ore hot briquette. ISIJ Int, 2011, 51(8): 1333 doi: 10.2355/isijinternational.51.1333 [20] Ueda S, Watanabe K, Yanagiya K, et al. Improvement of reactivity of carbon iron ore composite with biomass char for blast furnace. ISIJ Int, 2009, 49(10): 1505 doi: 10.2355/isijinternational.49.1505 [21] Mousa E, Lundgren M, Ökvist L S, et al. Reduced carbon consumption and CO2 emission at the blast furnace by use of briquettes containing torrefied sawdust. J Sustain Metall, 2019, 5(3): 391 doi: 10.1007/s40831-019-00229-7 [22] Tang H Q, Liu S H, Rong T. Preparation of high-carbon metallic briquette for blast furnace application. ISIJ Int, 2019, 59(1): 22 doi: 10.2355/isijinternational.ISIJINT-2018-421 [23] Yu Z, Liu Z, Tang H Q, et al. Preparation of high-strength biochar composite briquette for blast furnace ironmaking. Metall Res Technol, 2021, 118(1): 109 doi: 10.1051/metal/2020083 [24] Tang H Q, Yun Z W, Fu X F, et al. Modeling and experimental study of ore-carbon briquette reduction under CO–CO2 atmosphere. Metals, 2018, 8(4): 205 doi: 10.3390/met8040205 [25] Turkdogan E T. Blast furnace reactions. Metall Trans B, 1978, 9(2): 163 [26] Tang H, Sun Y J, Rong T. Experimental and numerical investigation of reaction behavior of carbon composite briquette in blast furnace. Metals, 2019, 10(1): 49 doi: 10.3390/met10010049 [27] Ueda S, Yanagiya K, Watanabe K, et al. Reaction model and reduction behavior of carbon iron ore composite in blast furnace. ISIJ Int, 2009, 49(6): 827 doi: 10.2355/isijinternational.49.827 [28] Tang H Q, Qi T F, Qin Y Q. Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char. JOM, 2015, 67(9): 1956 doi: 10.1007/s11837-015-1541-2 [29] Ge Q. Kinetics of gas-solid reactions. Beijing: Atomic Energy Press, 1991葛庆仁. 气固反应动力学. 北京: 原子能出版社, 1991 [30] Natsui S, Kikuchi T, Suzuki R O. Numerical analysis of carbon monoxide-hydrogen gas reduction of iron ore in a packed bed by an Euler-Lagrange approach. Metall Mater Trans B, 2014, 45(6): 2395 doi: 10.1007/s11663-014-0132-x [31] Leimalm U, Forsmo S, Dahlstedt A, et al. Blast furnace pellet textures during reduction and correlation to strength. ISIJ Int, 2010, 50(10): 1396 doi: 10.2355/isijinternational.50.1396 [32] Zhou J C, Xue Z L, Li Z Q, et al. Characteristics of grain growth of metallic phase in direct reduction of high phosphorus oolitic hematite. J Wuhan Univ Sci Technol (Nat Sci Ed) , 2007, 30(5): 458周继程, 薛正良, 李宗强, 等. 高磷鲕状赤铁矿直接还原过程中铁颗粒长大特性研究. 武汉科技大学学报(自然科学版), 2007, 30(5):458 [33] Tang H Q, Rong T, Fan K. Numerical investigation of applying high-carbon metallic briquette in blast furnace ironmaking. ISIJ Int, 2019, 59(5): 810 doi: 10.2355/isijinternational.ISIJINT-2018-673 [34] Chu M S, Nogami H, Yagi J I. Numerical analysis on charging carbon composite agglomerates into blast furnace. ISIJ Int, 2004, 44(3): 510 doi: 10.2355/isijinternational.44.510 [35] Kasai A, Matsui Y. Lowering of thermal reserve zone temperature in blast furnace by adjoining carbonaceous material and iron ore. ISIJ Int, 2004, 44(12): 2073 doi: 10.2355/isijinternational.44.2073 -