• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质炭复合团块在高炉中的反应行为

张壮壮 王强 唐惠庆 薛庆国

张壮壮, 王强, 唐惠庆, 薛庆国. 生物质炭复合团块在高炉中的反应行为[J]. 工程科学学报, 2022, 44(7): 1192-1201. doi: 10.13374/j.issn2095-9389.2020.11.30.002
引用本文: 张壮壮, 王强, 唐惠庆, 薛庆国. 生物质炭复合团块在高炉中的反应行为[J]. 工程科学学报, 2022, 44(7): 1192-1201. doi: 10.13374/j.issn2095-9389.2020.11.30.002
ZHANG Zhuang-zhuang, WANG Qiang, TANG Hui-qing, XUE Qing-guo. Reaction behavior of the biochar composite briquette in the blast furnace[J]. Chinese Journal of Engineering, 2022, 44(7): 1192-1201. doi: 10.13374/j.issn2095-9389.2020.11.30.002
Citation: ZHANG Zhuang-zhuang, WANG Qiang, TANG Hui-qing, XUE Qing-guo. Reaction behavior of the biochar composite briquette in the blast furnace[J]. Chinese Journal of Engineering, 2022, 44(7): 1192-1201. doi: 10.13374/j.issn2095-9389.2020.11.30.002

生物质炭复合团块在高炉中的反应行为

doi: 10.13374/j.issn2095-9389.2020.11.30.002
基金项目: 国家自然科学基金资助项目(U1960205)
详细信息
    通讯作者:

    E-mail:hqtang@ustb.edu.cn

  • 中图分类号: TF537

Reaction behavior of the biochar composite briquette in the blast furnace

More Information
  • 摘要: 研究了生物质复合团块在高炉中的反应行为,该复合团块主要成分(质量分数)为:11.1% C、72.7% Fe3O4、11.25% FeO、0.77% Fe和4.67% 脉石。并对高炉环境下复合团块的反应行为进行了建模,通过高炉气氛下的等温动力学实验确定模型参数并进行了模型验证。进一步,结合模型模拟,模拟高炉环境的实验和团块微观结构分析,对模拟高炉条件下和实际高炉条件下团块的反应行为进行了分析。研究结果表明:模拟高炉条件下,在60 min (973 K) 到120 min (1273 K) 期间, 团块的微观结构发生明显变化,其微观结构由渣相网络结构向金属铁网络结构转变。在实际高炉中,复合团块的反应进程主要包括三个阶段:团块的高炉煤气还原(473~853 K)、团块的高炉煤气还原和部分自还原(853~953 K)以及团块的完全自还原(953~1150 K)。在团块自还原参与阶段,与烧结矿相比,团块内氧化铁还原速率更快;与焦炭相比,团块内生物质炭气化速率更高。同时,在此阶段,团块有提高高炉煤气利用率和降低高炉热储备区温度的作用。

     

  • 图  1  模拟高炉条件下气体成分和温度变化曲线

    Figure  1.  Simulated blast furnace (BF) gas composition and temperature profiles

    图  2  反应模型

    Figure  2.  Model concept

    图  3  团块的XRD图谱

    Figure  3.  XRD pattern of the BCB

    图  4  团块样品的SEM图像.(a)烧结氧化铁基体; (b)生物质炭颗粒的微观形貌

    Figure  4.  SEM images of the BCB sample: (a) sintered iron-oxide texture; (b) microstructure of biochar particles

    图  5  模拟高炉条件下部分反应后复合团块冷抗碎强度的变化

    Figure  5.  Change of the BCB cold crushing strength after partial reaction under simulated BF conditions

    图  6  用于确定ags的数据点

    Figure  6.  Selected data points for determining ags

    图  7  不同实验方案下实验和模型预测的质量损失曲线对比

    Figure  7.  Measured and model-predicted mass-loss curves under different scenarios

    图  8  生物质炭复合团块样品的图像. (a) 原始图像; (b) 在方案Ⅰ下反应后图像;(c) 在方案Ⅱ下反应后图像; (d) 在方案Ⅲ下反应后图像

    Figure  8.  Images of the BCB sample: (a) original; (b) after reaction under scenario Ⅰ; (c) after reaction under scenario Ⅱ; (d) after reaction under Scenario Ⅲ

    图  9  模拟高炉条件下生物质炭复合团块还原行为. (a)还原分数随时间的变化; (b)生物炭转化率随时间的变化

    Figure  9.  BCB reduction behavior under simulated BF conditions: (a) change in reduction fraction with time; (b) change in biochar conversion with time

    图  10  不同时间下生物质炭复合团块的XRD谱. (a) 60 min; (b) 90 min; (c) 120 min

    Figure  10.  XRD patterns of BCB at different times: (a) 60 min; (b) 90 min; (c) 120 min

    图  11  不同时间生物质炭复合团块的扫描电镜图像. (a) 60 min; (b) 90 min; (c) 120 min

    Figure  11.  SEM images of BCB at different times: (a) 60 min; (b) 90 min; (c) 120 min

    图  12  (a)用于建模的固体流动路径的图示;(b)高炉变量沿路径的变化

    Figure  12.  (a) Illustration of solid flowing path for modeling; (b) change of BF variables along the path

    图  13  实际高炉中的生物质炭复合团块反应行为.(a)沿路径的还原分数变化;(b)沿路径的生物炭转化率变化;(c)沿路径的CO和CO2生成速率变化;(d)在1150至1168 K温度下CO和CO2的生成速率变化

    Figure  13.  BCB reaction behavior in the BF: (a) change in reduction fraction along the path; (b) change in biochar conversion along the path; (c) changes in generation rates of CO and CO2 along the path; (d) changes in generation rates of CO and CO2 from 1150 to 1168 K

    图  14  生物质炭复合团块和高炉煤气在生物质炭复合团块自还原区区域的CO还原势

    Figure  14.  CO potentials of the BCB and the BF gas in the zone with BCB self-reduction

    表  1  制备用生物炭工业分析(质量分数)

    Table  1.   Proximate analysis of the prepared biochar fines %

    VolatileMoistureFixed carbonAsh
    3.912.9588.234.91
    下载: 导出CSV

    表  2  等温团块动力学实验方案

    Table  2.   Scenarios for isothermal biochar composite briquette ( BCB) kinetic tests

    ScenarioTemperature/KCO2 volume fraction/%CO volume fraction /%N2 volume fraction /%
    1073203050
    1173153550
    1273104050
    下载: 导出CSV

    表  3  模型中涉及的反应

    Table  3.   Reactions involved in the model

    No.ReactionReaction rate/(mol·m–3·s–1)Ref.
    1$ {\text{3 F}}{{\text{e}}_{\text{2}}}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = 2{\text{ F}}{{\text{e}}_{\text{3}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) + {\text{C}}{{\text{O}}_{\text{2}}}({\text{g}}) $${R_i} = \dfrac{ {({P_{ {\text{CO} } } } - {P_{ {\text{C} }{ {\text{O} }_{\text{2} } } } }/{K_i})/(8.314T)} }{ {({K_i}/({k_i}(1 + {K_i}))} }{(1 - {f_i})^{2/3} }{a_ {\text{gs} } }$(i=1,2,3), ${K_1} = \exp ({\text{7} }{\text{.255 + 3720} }/T),$ ${k_1} = \exp ( - 1.445 - 6038/T),$ ${K_2} = \exp (5.289 - 4711/T),$ ${k_{\text{2}}} = \exp ( - {\text{2}}{\text{.515}} - {\text{4811}}/T),$ ${K_3} = \exp ( - 3.127 + 2879.63/T),$ ${k_3} = \exp (0.805 - 7385/T)$[24,27]
    2$ {\text{F}}{{\text{e}}_{\text{3}}}{{\text{O}}_{\text{4}}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = 3{\text{ FeO}}\left( {\text{s}} \right){\text{ + C}}{{\text{O}}_{\text{2}}}({\text{g}}) $
    3$ {\text{FeO}}\left( {\text{s}} \right) + {\text{CO}}\left( {\text{g}} \right) = {\text{Fe}}\left( {\text{s}} \right){\text{ + C}}{{\text{O}}_{\text{2}}}({\text{g}}) $
    4$ {\text{C}}\left( {\text{s}} \right) + {\text{C}}{{\text{O}}_{\text{2}}}\left( {\text{g}} \right) = 2{\text{ CO(g)}} $$\begin{gathered} {R_4}{\text{ = } }{\rho _{ {\text{C,0} } } }{k_{\text{4} } }{\left( { {\text{1} } - {f_{\text{4} } } } \right)^{ {\text{2/3} } } }{\text{(} }{P_{ {\text{C} }{ {\text{O} }_{\text{2} } } } }{\text{/1} }{\text{.01} } \times {\text{1} }{ {\text{0} }^{\text{5} } }{\text{)/} }{M_{\text{C} } }_{\text{, } } \hfill \\ {k_4} = 1{\text{5} }00\exp ( - 13{\text{1} }00{\text{0} }/RT) \hfill \\ \end{gathered}$[28]
    下载: 导出CSV

    表  4  生物质炭复合团块的矿物组成 (质量分数)

    Table  4.   Mineralogical composition of BCB %

    CarbonMagnetiteWustiteMetallic ironGangue
    11.1072.2111.250.774.67
    下载: 导出CSV

    表  5  不同的实验方案下团块的反应参数和实验测量值及模型预测值

    Table  5.   Measured and model-predicted parameters of the BCB reduced under different scenarios

    ScenarioBCB reduction fractionBCB biochar conversion
    MeasurementModel predictionMeasurementModel prediction
    I0.140.160.100.20
    II0.440.490.330.53
    III0.850.900.860.94
    下载: 导出CSV
  • [1] Cai J J. Air consumption and waste gas emission of steel industry. Iron Steel, 2019, 54(4): 1

    蔡九菊. 钢铁工业的空气消耗与废气排放. 钢铁, 2019, 54(4):1
    [2] Ariyama T, Sato M. Optimization of ironmaking process for reducing CO2 emissions in the integrated steel works. ISIJ Int, 2006, 46(12): 1736 doi: 10.2355/isijinternational.46.1736
    [3] An R Y, Yu B Y, Li R, et al. Potential of energy savings and CO2 emission reduction in China’s iron and steel industry. Appl Energy, 2018, 226: 862 doi: 10.1016/j.apenergy.2018.06.044
    [4] Wang P, Jiang Z, Zhang X, et al. Long-term scenario forecast of production routes, energy consumption and emissions for Chinese steel industry. J Univ Sci Technol Beijing, 2014, 36(12): 1683

    汪鹏, 姜泽毅, 张欣欣, 等. 中国钢铁工业流程结构、能耗和排放长期情景预测. 北京科技大学学报, 2014, 36(12):1683
    [5] Zhang W L. Current situation and future technical prospect of blast furnace ironmaking in China. China Met Bull, 2019(2): 10 doi: 10.3969/j.issn.1672-1667.2019.02.005

    张文来. 中国高炉炼铁现状及未来技术展望. 中国金属通报, 2019(2):10 doi: 10.3969/j.issn.1672-1667.2019.02.005
    [6] Zhao J, Zuo H B, Wang Y J, et al. Review of green and low-carbon ironmaking technology. Ironmak Steelmak, 2020, 47(3): 296 doi: 10.1080/03019233.2019.1639029
    [7] Florentino-Madiedo L, Díaz-Faes E, Barriocanal C. Reactivity of biomass containing briquettes for metallurgical coke production. Fuel Process Technol, 2019, 193: 212 doi: 10.1016/j.fuproc.2019.05.017
    [8] Cardona L M V, Narita C Y, Takano C, et al. Characterisation of coal-charcoal composite biocoke as a sustainable alternative for ironmaking. Can Metall Q, 2017, 56(2): 190 doi: 10.1080/00084433.2017.1299342
    [9] Zandi M, Martinez-Pacheco M, Fray T A T. Biomass for iron ore sintering. Miner Eng, 2010, 23(14): 1139 doi: 10.1016/j.mineng.2010.07.010
    [10] Kieush L, Yaholnyk M, Boyko M, et al. Study of biomass utilisation in the iron ore sintering. Acta Metall Slovaca, 2019, 25(1): 55 doi: 10.12776/ams.v1i1.1225
    [11] Liu Y R, Shen Y S. CFD study of charcoal combustion in a simulated ironmaking blast furnace. Fuel Process Technol, 2019, 191: 152 doi: 10.1016/j.fuproc.2019.04.004
    [12] Wang C, Mellin P, Lövgren J, et al. Biomass as blast furnace injectant-Considering availability, pretreatment and deployment in the Swedish steel industry. Energy Convers Manag, 2015, 102: 217 doi: 10.1016/j.enconman.2015.04.013
    [13] Mathieson J G, Rogers H, Somerville M A, et al. Reducing net CO2 emissions using charcoal as a blast furnace tuyere injectant. ISIJ Int, 2012, 52(8): 1489 doi: 10.2355/isijinternational.52.1489
    [14] Ahmed H M, Viswanathan N, Bjorkman B. Composite pellets-A potential raw material for iron-making. Steel Res Int, 2014, 85(3): 293 doi: 10.1002/srin.201300072
    [15] Tanaka Y, Ueno T, Okumura K, et al. Reaction behavior of coal rich composite iron ore hot briquettes under load at high temperatures until 1400℃. ISIJ Int, 2011, 51(8): 1240 doi: 10.2355/isijinternational.51.1240
    [16] Mizoguchi H, Suzuki H, Hayashi S. Influence of mixing coal composite iron ore hot briquettes on blast furnace simulated reaction behavior in a packed mixed bed. ISIJ Int, 2011, 51(8): 1247 doi: 10.2355/isijinternational.51.1247
    [17] Wu K, Qi Y H, Zhao J W, et al. Reduction and strength of after reduction of cooled pellet contain carbon. J Univ Sci Technol Beijing, 2000, 22(2): 101 doi: 10.3321/j.issn:1001-053X.2000.02.002

    吴铿, 齐渊洪, 赵继伟, 等. 含碳球团的还原性和还原冷却后的强度. 北京科技大学学报, 2000, 22(2):101 doi: 10.3321/j.issn:1001-053X.2000.02.002
    [18] Wang H T, Chu M S, Zhao W, et al. Influence of iron ore addition on metallurgical reaction behavior of iron coke hot briquette. Metall Mater Trans B, 2019, 50(1): 324 doi: 10.1007/s11663-018-1481-7
    [19] Kasai A, Toyota H, Nozawa K, et al. Reduction of reducing agent rate in blast furnace operation by carbon composite iron ore hot briquette. ISIJ Int, 2011, 51(8): 1333 doi: 10.2355/isijinternational.51.1333
    [20] Ueda S, Watanabe K, Yanagiya K, et al. Improvement of reactivity of carbon iron ore composite with biomass char for blast furnace. ISIJ Int, 2009, 49(10): 1505 doi: 10.2355/isijinternational.49.1505
    [21] Mousa E, Lundgren M, Ökvist L S, et al. Reduced carbon consumption and CO2 emission at the blast furnace by use of briquettes containing torrefied sawdust. J Sustain Metall, 2019, 5(3): 391 doi: 10.1007/s40831-019-00229-7
    [22] Tang H Q, Liu S H, Rong T. Preparation of high-carbon metallic briquette for blast furnace application. ISIJ Int, 2019, 59(1): 22 doi: 10.2355/isijinternational.ISIJINT-2018-421
    [23] Yu Z, Liu Z, Tang H Q, et al. Preparation of high-strength biochar composite briquette for blast furnace ironmaking. Metall Res Technol, 2021, 118(1): 109 doi: 10.1051/metal/2020083
    [24] Tang H Q, Yun Z W, Fu X F, et al. Modeling and experimental study of ore-carbon briquette reduction under CO–CO2 atmosphere. Metals, 2018, 8(4): 205 doi: 10.3390/met8040205
    [25] Turkdogan E T. Blast furnace reactions. Metall Trans B, 1978, 9(2): 163
    [26] Tang H, Sun Y J, Rong T. Experimental and numerical investigation of reaction behavior of carbon composite briquette in blast furnace. Metals, 2019, 10(1): 49 doi: 10.3390/met10010049
    [27] Ueda S, Yanagiya K, Watanabe K, et al. Reaction model and reduction behavior of carbon iron ore composite in blast furnace. ISIJ Int, 2009, 49(6): 827 doi: 10.2355/isijinternational.49.827
    [28] Tang H Q, Qi T F, Qin Y Q. Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char. JOM, 2015, 67(9): 1956 doi: 10.1007/s11837-015-1541-2
    [29] Ge Q. Kinetics of gas-solid reactions. Beijing: Atomic Energy Press, 1991

    葛庆仁. 气固反应动力学. 北京: 原子能出版社, 1991
    [30] Natsui S, Kikuchi T, Suzuki R O. Numerical analysis of carbon monoxide-hydrogen gas reduction of iron ore in a packed bed by an Euler-Lagrange approach. Metall Mater Trans B, 2014, 45(6): 2395 doi: 10.1007/s11663-014-0132-x
    [31] Leimalm U, Forsmo S, Dahlstedt A, et al. Blast furnace pellet textures during reduction and correlation to strength. ISIJ Int, 2010, 50(10): 1396 doi: 10.2355/isijinternational.50.1396
    [32] Zhou J C, Xue Z L, Li Z Q, et al. Characteristics of grain growth of metallic phase in direct reduction of high phosphorus oolitic hematite. J Wuhan Univ Sci Technol (Nat Sci Ed), 2007, 30(5): 458

    周继程, 薛正良, 李宗强, 等. 高磷鲕状赤铁矿直接还原过程中铁颗粒长大特性研究. 武汉科技大学学报(自然科学版), 2007, 30(5):458
    [33] Tang H Q, Rong T, Fan K. Numerical investigation of applying high-carbon metallic briquette in blast furnace ironmaking. ISIJ Int, 2019, 59(5): 810 doi: 10.2355/isijinternational.ISIJINT-2018-673
    [34] Chu M S, Nogami H, Yagi J I. Numerical analysis on charging carbon composite agglomerates into blast furnace. ISIJ Int, 2004, 44(3): 510 doi: 10.2355/isijinternational.44.510
    [35] Kasai A, Matsui Y. Lowering of thermal reserve zone temperature in blast furnace by adjoining carbonaceous material and iron ore. ISIJ Int, 2004, 44(12): 2073 doi: 10.2355/isijinternational.44.2073
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  47
  • HTML全文浏览量:  45
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 网络出版日期:  2022-05-11
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回