• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硼掺杂镍酸锂的改性研究

张宁 厉英 倪培远

张宁, 厉英, 倪培远. 硼掺杂镍酸锂的改性研究[J]. 工程科学学报, 2021, 43(8): 1012-1018. doi: 10.13374/j.issn2095-9389.2020.11.30.004
引用本文: 张宁, 厉英, 倪培远. 硼掺杂镍酸锂的改性研究[J]. 工程科学学报, 2021, 43(8): 1012-1018. doi: 10.13374/j.issn2095-9389.2020.11.30.004
ZHANG Ning, LI Ying, NI Pei-yuan. Enhanced electrochemical performance of LiNiO2 by B doping[J]. Chinese Journal of Engineering, 2021, 43(8): 1012-1018. doi: 10.13374/j.issn2095-9389.2020.11.30.004
Citation: ZHANG Ning, LI Ying, NI Pei-yuan. Enhanced electrochemical performance of LiNiO2 by B doping[J]. Chinese Journal of Engineering, 2021, 43(8): 1012-1018. doi: 10.13374/j.issn2095-9389.2020.11.30.004

硼掺杂镍酸锂的改性研究

doi: 10.13374/j.issn2095-9389.2020.11.30.004
基金项目: 国家自然科学基金资助项目(51834004,51774076,51704062)
详细信息
    通讯作者:

    E-mail:liying@mail.neu.edu.cn

  • 中图分类号: TM912.9

Enhanced electrochemical performance of LiNiO2 by B doping

More Information
  • 摘要: 采用共沉淀法制备了Ni(OH)2前驱体材料,通过高温固相法制备了LiNiO2和B掺杂LiNiO2(B的摩尔分数为1%),利用X射线衍射(XRD)、里特维尔德(Rietveld)精修、扫描电子显微镜(SEM)、恒流充放电测试、循环伏安(CV)和电化学阻抗谱(EIS)对材料的晶体结构、表面形貌和电化学性能进行了系统性表征。XRD和Rietveld精修结果表明,LiNiO2和B掺杂LiNiO2均具有良好的层状结构,B因为占据在过渡金属层和锂层的四面体间隙位而导致掺杂后略微增大材料的晶格参数和晶胞体积,同时增大了LiO6八面体的间距,进而促进锂离子运输。由于掺杂的B的摩尔分数仅为1%,LiNiO2和B掺杂LiNiO2均表现为直径10 µm左右的多晶二次颗粒,且一次颗粒晶粒尺寸没有明显区别。长循环数据表明B掺杂可以有效提高材料的循环容量保持率,经100次循环后,B掺杂样品在40 mA·g−1 电流下的容量保持率为77.5%,优于未掺杂样品(相同条件下容量保持率为66.6%)。微分容量曲线和EIS分析表明B掺杂可以有效抑制循环过程中的阻抗增长。

     

  • 图  1  LiNiO2和B掺杂LiNiO2的XRD图谱和精修图谱

    Figure  1.  X-ray diffraction patterns and fitting results of LiNiO2 and B-doped LiNiO2

    图  2  扫描电镜照片。(a)LiNiO2;(b)B掺杂LiNiO2

    Figure  2.  SEM images of: (a) LiNiO2; (b) B doped LiNiO2

    图  3  LiNiO2和B掺杂LiNiO2的(a)比容量曲线,(b)微分容量曲线,(c)首圈CV,(d)第2圈CV

    Figure  3.  (a) Voltage vs specific capacity, (b) differential capacity vs cell voltage, (c) CV for the 1st cycle, and (d) CV for the 2nd cycles of LiNiO2 and B-doped LiNiO2

    图  4  LiNiO2和B掺杂LiNiO2的在30 ℃,3.0~4.3 V的循环寿命曲线

    Figure  4.  Cycle life of LiNiO2 and B-doped LiNiO2 at 30 ℃ at voltage at 3.0–4.3 V

    图  5  (a)LiNiO2,(b)B掺杂LiNiO2在第2、第54,和第106次循环的微分容量曲线变化;(c)LiNiO2和B掺杂LiNiO2在第106次循环的微分容量曲线的对比图;(d)循环前后EIS图谱

    Figure  5.  Differential capacity vs cell voltage of (a) LiNiO2 and (b) B-doped LiNiO2 at the 2nd, 54th, and 106th cycles; (c) comparison of differential capacity vs cell voltage at the 106th cycle; (d) electrochemical impedance spectroscopy before and after the cycling of LiNiO2 and B-doped LiNiO2

    表  1  用Rietica得到的晶格参数信息

    Table  1.   Lattice parameters and fitting results using Rietica

    Samplea/nmc/nmUnit cell volume/nm3Ni in Li layer/%LiO6 slab/nmNiO6 slab/nmI003/I104Bragg-factor
    LiNiO20.287691.419910.1017732.00.25670.21661.152.07
    B-doped LiNiO20.287731.420000.1018092.60.25810.21531.121.96
    下载: 导出CSV

    表  2  用ZView拟合得到的循环前后的阻抗值

    Table  2.   Electrochemical impedance spectroscopy fitting results using ZView (Ω·cm2)

    ConditionSampleRsRcRct
    Before cyclesLiNiO23.710.920.1
    B doped LiNiO24.114.424.2
    After cyclesLiNiO211.6125.1378.5
    B doped LiNiO210.4116.0235.2
    下载: 导出CSV
  • [1] Xu G L, Liu X, Daali A, et al. Challenges and strategies to advance high-energy nickel-rich layered lithium transition metal oxide cathodes for harsh operation. Adv Funct Mater, 2020, 30(46): 2004748 doi: 10.1002/adfm.202004748
    [2] Li J W, Li Y, Yi W T, et al. Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method. J Mater Sci:Mater Electron, 2019, 30(8): 7490 doi: 10.1007/s10854-019-01062-0
    [3] Li J W, Li Y, Guo Y N, et al. A facile method to enhance electrochemical performance of high-nickel cathode material Li(Ni0.8Co0.1Mn0.1)O2 via Ti doping. J Mater Sci:Mater Electron, 2018, 29(13): 10702 doi: 10.1007/s10854-018-9093-1
    [4] Deng T, Fan X L, Cao L S, et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule, 2019, 3(10): 2550 doi: 10.1016/j.joule.2019.08.004
    [5] Xu C, Märker K, Lee J, et al. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat Mater, 2021, 20(1): 84 doi: 10.1038/s41563-020-0767-8
    [6] An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles. Chin J Eng, 2019, 41(1): 22

    安富强, 赵洪量, 程志, 等. 纯电动车用锂离子电池发展现状与研究进展. 工程科学学报, 2019, 41(1):22
    [7] Wang L C, Li L, Wang H Y, et al. Fast capacitive energy storage and long cycle life in a deintercalation-intercalation cathode material. Small, 2020, 16(13): 1906025 doi: 10.1002/smll.201906025
    [8] Li J, Harlow J, Stakheiko N, et al. Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2. J Electrochem Soc, 2018, 165(11): A2682 doi: 10.1149/2.0491811jes
    [9] Zhang N, Li J, Li H Y, et al. Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials. Chem Mater, 2018, 30(24): 8852 doi: 10.1021/acs.chemmater.8b03827
    [10] Li H Y, Cormier M, Zhang N, et al. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J Electrochem Soc, 2019, 166(4): A429 doi: 10.1149/2.1381902jes
    [11] Li H Y, Zhang N, Li J, et al. Updating the structure and electrochemistry of LixNiO2 for 0≤x≤1. J Electrochem Soc, 2018, 165(13): A2985 doi: 10.1149/2.0381813jes
    [12] Liu A, Zhang N, Li H Y, et al. Investigating the effects of magnesium doping in various Ni-rich positive electrode materials for Lithium ion batteries. J Electrochem Soc, 2019, 166(16): A4025 doi: 10.1149/2.1101915jes
    [13] Ohzuku T, Ueda A, Kouguchi M. Synthesis and characterization of LiAl1/4Ni3/4O2 (R3-m) for lithium-ion (shuttlecock) batteries. J Electrochem Soc, 1995, 142(12): 4033 doi: 10.1149/1.2048458
    [14] Li W D, Liu X M, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: A comprehensive evaluation on long-term cyclability. Adv Energy Mater, 2018, 8(15): 1703154 doi: 10.1002/aenm.201703154
    [15] Steiner J, Cheng H, Walsh J, et al. Targeted surface doping with reversible local environment improves oxygen stability at the electrochemical interfaces of nickel-rich cathode materials. ACS Appl Mater Interfaces, 2019, 11(41): 37885 doi: 10.1021/acsami.9b14729
    [16] Jiao L F, Zhang M, Yuan H T, et al. Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2−x/2Mn0.6−x/2Crx]O2 (x = 0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries. J Power Sources, 2007, 167(1): 178 doi: 10.1016/j.jpowsour.2007.01.070
    [17] Ryu H H, Park N Y, Yoon D R, et al. New class of Ni-rich cathode materials Li[NixCoyB1–xy]O2 for next lithium batteries. Adv Energy Mater, 2020, 10(25): 2000495 doi: 10.1002/aenm.202000495
    [18] Mesnier A, Manthiram A. Synthesis of LiNiO2 at moderate oxygen pressure and long-term cyclability in lithium-ion full cells. ACS Appl Mater Interfaces, 2020, 12(47): 52826 doi: 10.1021/acsami.0c16648
    [19] Pan L C, Xia Y G, Qiu B, et al. Structure and electrochemistry of B doped Li(Li0.2Ni0.13Co0.13Mn0.54)1–xBxO2 as cathode materials for lithium-ion batteries. J Power Sources, 2016, 327: 273 doi: 10.1016/j.jpowsour.2016.07.064
    [20] Yang W, Xiang W, Chen Y X, et al. Interfacial regulation of Ni-rich cathode materials with an ion-conductive and pillaring layer by infusing gradient boron for improved cycle stability. ACS Appl Mater Interfaces, 2020, 12(9): 10240 doi: 10.1021/acsami.9b18542
    [21] Huang B H, Liu D Q, Zhang L H, et al. An efficient synthetic method to prepare high-performance Ni-rich LiNi0.8Co0.1Mn0.1O2 for lithium-ion batteries. ACS Appl Energy Mater, 2019, 2(10): 7403 doi: 10.1021/acsaem.9b01414
    [22] Nie Y, Xiao W, Miao C, et al. Boosting the electrochemical performance of LiNi0.8Co0.15Al0.05O2 cathode materials in situ modified with Li1.3Al0.3Ti1.7(PO4)3 fast ion conductor for lithium-ion batteries. Electrochimica Acta, 2020, 353: 136477 doi: 10.1016/j.electacta.2020.136477
    [23] Yao L, Li Y P, Gao X P, et al. Microstructure boosting the cycling stability of LiNi0.6Co0.2Mn0.2O2 cathode through Zr-based dual modification. Energy Storage Mater, 2021, 36: 179 doi: 10.1016/j.ensm.2020.12.026
    [24] Keefe A S, Weber R, Hill I G, et al. Studies of the SEI layers in Li(Ni0.5Mn0.3Co0.2)O2/artificial graphite cells after formation and after cycling. J Electrochem Soc, 2020, 167(12): 120507 doi: 10.1149/1945-7111/abaa1b
    [25] Keefe A S, Buteau S, Hill I G, et al. Temperature dependent EIS studies separating charge transfer impedance from contact impedance in lithium-ion symmetric cells. J Electrochem Soc, 2019, 166(14): A3272 doi: 10.1149/2.0541914jes
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  104
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回