• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超混沌电流对金属锰电解阳极电位振荡的调控

谢子楠 刘作华 李春彪 张鑫 顾加成 李强 陶长元

谢子楠, 刘作华, 李春彪, 张鑫, 顾加成, 李强, 陶长元. 超混沌电流对金属锰电解阳极电位振荡的调控[J]. 工程科学学报, 2021, 43(8): 1047-1054. doi: 10.13374/j.issn2095-9389.2020.12.01.002
引用本文: 谢子楠, 刘作华, 李春彪, 张鑫, 顾加成, 李强, 陶长元. 超混沌电流对金属锰电解阳极电位振荡的调控[J]. 工程科学学报, 2021, 43(8): 1047-1054. doi: 10.13374/j.issn2095-9389.2020.12.01.002
XIE Zi-nan, LIU Zuo-hua, LI Chun-biao, ZHANG Xin, GU Jia-cheng, LI Qiang, TAO Chang-yuan. Regulation of anodic potential oscillation in manganese metal electrolysis by hyperchaotic current[J]. Chinese Journal of Engineering, 2021, 43(8): 1047-1054. doi: 10.13374/j.issn2095-9389.2020.12.01.002
Citation: XIE Zi-nan, LIU Zuo-hua, LI Chun-biao, ZHANG Xin, GU Jia-cheng, LI Qiang, TAO Chang-yuan. Regulation of anodic potential oscillation in manganese metal electrolysis by hyperchaotic current[J]. Chinese Journal of Engineering, 2021, 43(8): 1047-1054. doi: 10.13374/j.issn2095-9389.2020.12.01.002

超混沌电流对金属锰电解阳极电位振荡的调控

doi: 10.13374/j.issn2095-9389.2020.12.01.002
基金项目: 国家自然科学基金资助项目(51974045)
详细信息
    通讯作者:

    E-mail:liuzuohua@cqu.edu.cn

  • 中图分类号: TF792;TQ151

Regulation of anodic potential oscillation in manganese metal electrolysis by hyperchaotic current

More Information
  • 摘要: 金属锰湿法电冶过程是一个典型的远离平衡态的非线性体系,直流作用下会出现电化学振荡、金属分形等非线性行为而引发体系额外的能耗。本文提出一种超混沌电流电解的新模式,通过引入超混沌电路代替原有直流电源来实现。超混沌电流作用下,采用恒电流极化曲线、阳极极化曲线、塔菲尔测试等分析方法和X射线衍射分析、扫描电子显微镜的表征方法,研究铅合金阳极电化学振荡行为与阳极沉积的锰氧化物之间的关联。研究结果表明,在电流密度为350 A·m−2恒电流极化30 min后,超混沌电流极化作用下电位振荡的平均振荡周期较直流极化提高5.6 s,平均振幅降低 38 mV;超混沌电流作用下阳极生成的MnO2,其表面较为致密平整,在一定程度上可以提高铅合金阳极析氧反应活性和耐腐蚀性。综合分析可知,将超混沌电流运用于金属锰电解过程,可以实现对阳极电化学振荡的有效调控,为进一步降低电解过程能耗和污染排放提供新思路。

     

  • 图  1  系统(1)的混沌吸引子(当 a = 4.5, b =5.5, c =5, d = 4, e = 0.4, m = 1, k = 0.2, 初始值为(1, 0, 1, 0))。(a)xy;(b)xz;(c)yz;(d)xu

    Figure  1.  Chaotic attractor of system (1) (a = 4.5, b = 5.5, c = 5, d = 4, e = 0.4, m = 1, k = 0.2, the initial value is (1, 0, 1, 0)): (a) xy; (b) xz; (c) yz; (d) xu

    图  2  忆阻系统(1)的电路结构图

    Figure  2.  Circuit structure diagram of memristive system (1)

    图  3  铅合金阳极的恒电流极化曲线(直流),(b,c)为(a)的局部放大图

    Figure  3.  Galvanostatic polarization of lead alloy anode (direct current), (b,c) is a local enlargement of (a)

    图  4  铅合金阳极的恒电流极化曲线(超混沌电流),(b,c)为(a)的局部放大图

    Figure  4.  Galvanostatic polarization of lead alloy anode (hyperchaotic current), (b,c) is a local enlargement of (a)

    图  5  铅合金阳极电势振荡周期的变化情况

    Figure  5.  Periodic variation of the potential oscillation of lead alloy anode

    图  6  铅合金阳极电势振荡振幅的变化情况

    Figure  6.  Amplitude variation of the potential oscillation of lead alloy anode

    图  7  不同恒电流极化时间下铅合金电极的阳极极化曲线

    Figure  7.  Anodic polarization curves of lead alloy electrodes under different galvanostatic polarization times

    图  8  不同恒电流极化时间下铅合金电极的塔菲尔曲线

    Figure  8.  Tafel plots of lead alloy electrodes under different galvanostatic polarization times

    图  9  阳极沉积MnO2的X射线衍射图

    Figure  9.  XRD patterns of anodic deposited MnO2

    图  10  阳极沉积MnO2的扫描电镜图。(a)直流;(b)超混沌电流

    Figure  10.  SEM images of anodic deposited MnO2: (a) direct current; (b) hyperchaotic current

    表  1  不同恒电流极化下铅合金电极的耐蚀情况

    Table  1.   Corrosion parameters of lead alloy electrodes under different galvanostatic polarization

    Polarization conditionsjcorr/(10−4A·cm−2)Ecorr/V
    0 min0.6440.476
    DC, 30 min1.8140.476
    DC, 60 min1.9080.578
    HCC, 30 min1.3180.505
    HCC, 60 min1.6980.593
    下载: 导出CSV
  • [1] Tan Z Z, Zhang L Y. A research progress in electrolytic manganese metal industry of China. Chinas Manganese Ind, 2019, 37(2): 1

    谭柱中, 张丽云. 中国电解金属锰工业研究进展. 中国锰业, 2019, 37(2):1
    [2] Lü D Y, Ma B Z, Chen Y Q, et al. Beneficiation of low-grade manganese ore by hydrochloric acid leaching and high-value regeneration of acid medium. Chin J Eng, 2020, 42(5): 578

    吕东亚, 马保中, 陈永强, 等. 盐酸法富集低品位锰矿及酸介质高值再生工艺. 工程科学学报, 2020, 42(5):578
    [3] Zhang X J, Huang H, Dong J, et al. Influence of manganese on the electrochemical behavior of an aluminum cathode used in zinc electrowinning. Chin J Eng, 2018, 40(7): 800

    张小军, 黄惠, 董劲, 等. 锌电积过程中锰元素对铝阴极的电化学行为影响. 工程科学学报, 2018, 40(7):800
    [4] Zhang R R, Ma X T, Shen X X, et al. Life cycle assessment of electrolytic manganese metal production. J Clean Prod, 2020, 253: 119951 doi: 10.1016/j.jclepro.2019.119951
    [5] Fernández-Barcia M, Hoffmann V, Oswald S, et al. Electrodeposition of manganese layers from sustainable sulfate based electrolytes. Surf Coat Technol, 2018, 334: 261 doi: 10.1016/j.surfcoat.2017.11.028
    [6] Niu Y C, Na C G, Wu S K. Evaluation and analysis of mineral resource security capability —a case study of manganese ore. Nat Resour Econ China, 2021, 34(4): 78

    牛颖超, 那春光, 吴尚昆. 矿产资源保障能力评价与分析——以锰矿为例. 中国国土资源经济, 2021, 34(4):78
    [7] Yang F, Jiang L X, Yu X Y, et al. Catalytic effects of $ {\rm{N}}_4^+ $ on hydrogen evolution and manganese electrodeposition on stainless steel. Trans Nonferrous Met Soc China, 2019, 29(11): 2430 doi: 10.1016/S1003-6326(19)65149-6
    [8] Tao C Y, Liu Z H, Fan X. The Theory and Engineering Application of Electrolytic Manganese Energy Saving and Emission Reduction. Chongqing: Chongqing University Press, 2018

    陶长元, 刘作华, 范兴. 电解锰节能减排理论与工程应用. 重庆: 重庆大学出版社, 2018
    [9] Forghani M, McCarthy J, Donne S W. Oscillatory current behavior in energy storage electrode materials. J Electrochem Soc, 2019, 166(15): A3620 doi: 10.1149/2.0701915jes
    [10] Yang Y X, Zhou H, Zhang Q, et al. Template-free electrodeposition of dendritic metal blades for efficient flexible manganese oxide electrode. J Electrochem Soc, 2019, 166(15): A3559 doi: 10.1149/2.0181915jes
    [11] Fan X, Hou J, Sun D G, et al. Mn-oxides catalyzed periodic current oscillation on the anode. Electrochimica Acta, 2013, 102: 466 doi: 10.1016/j.electacta.2013.03.175
    [12] Fan X, Yang D, Ding L, et al. Periodic current oscillation catalyzed by δ-MnO2 nanosheets. Chemphyschem, 2015, 16(1): 176 doi: 10.1002/cphc.201402623
    [13] Bai H, Qing S L, Yang D P, et al. Periodic potential oscillation during oxygen evolution catalyzed by manganese oxide at constant current. J Electrochem Soc, 2017, 164(4): E78 doi: 10.1149/2.1241704jes
    [14] Xie Z N, Liu Z H, Zhang X J, et al. Electrochemical oscillation on anode regulated by sodium oleate in electrolytic metal manganese. J Electroanal Chem, 2019, 845: 13 doi: 10.1016/j.jelechem.2019.05.012
    [15] Zhou H, Zhang N N, Bai H, et al. A pulse modulatable self-oscillation kinetics for water oxidation at large current on manganese catalyst. Electrochimica Acta, 2020, 337: 135798 doi: 10.1016/j.electacta.2020.135798
    [16] Xie Z N, Liu Z H, Chang J, et al. Electrochemical behaviors of MnO2 on lead alloy anode during pulse electrodeposition for efficient manganese electrowinning. ACS Sustain Chem Eng, 2020, 8(39): 15044 doi: 10.1021/acssuschemeng.0c06259
    [17] Bao B C, Bao H, Wang N, et al. Hidden extreme multistability in memristive hyperchaotic system. Chaos Solitons Fractals, 2017, 94: 102 doi: 10.1016/j.chaos.2016.11.016
    [18] Kumar S, Strachan J P, Stanley Williams R. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature, 2017, 548(7667): 318 doi: 10.1038/nature23307
    [19] Jiang X, Shao L, Zhang S X, et al. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 2017, 358(6361): 344 doi: 10.1126/science.aao0763
    [20] Chai X L, Fu X L, Gan Z H, et al. A color image cryptosystem based on dynamic DNA encryption and chaos. Signal Process, 2019, 155: 44 doi: 10.1016/j.sigpro.2018.09.029
    [21] Bao B C, Jiang T, Wang G Y, et al. Two-memristor-based Chua's hyperchaotic circuit with plane equilibrium and its extreme multistability. Nonlinear Dyn, 2017, 89(2): 1157 doi: 10.1007/s11071-017-3507-0
    [22] Hu X K, Zhou P. Circuit realization of a 3D multistability chaotic system and its synchronization via linear resistor and linear capacitor in parallel coupling. Complexity, 2020, 2020: 9846934
    [23] Li C B, Sprott J C. An infinite 3-D quasiperiodic lattice of chaotic attractors. Phys Lett A, 2018, 382(8): 581 doi: 10.1016/j.physleta.2017.12.022
    [24] Li C B, Sun J Y, Lu T, et al. Polarity balance for attractor self-reproducing. Chaos, 2020, 30(6): 063144 doi: 10.1063/5.0007668
    [25] Jaimes R, Miranda-Hernández M, Lartundo-Rojas L, et al. Characterization of anodic deposits formed on Pb-Ag electrodes during electrolysis in mimic zinc electrowinning solutions with different concentrations of Mn(II). Hydrometallurgy, 2015, 156: 53 doi: 10.1016/j.hydromet.2015.05.008
    [26] Zhang C M, Duan N, Jiang L H, et al. The impact mechanism of Mn2+ ions on oxygen evolution reaction in zinc sulfate electrolyte. J Electroanal Chem, 2018, 811: 53 doi: 10.1016/j.jelechem.2018.01.040
    [27] Schmachtel S, Murtomäki L, Aromaa J, et al. Simulation of electrochemical processes during oxygen evolution on Pb-MnO2 composite electrodes. Electrochimica Acta, 2017, 245: 512 doi: 10.1016/j.electacta.2017.04.131
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  56
  • HTML全文浏览量:  28
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-01
  • 网络出版日期:  2021-07-22
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回