• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ba3Ca1+xNb2−xO9−δ复合钙钛矿型固体电解质性能研究

丁玉石 厉英

丁玉石, 厉英. Ba3Ca1+xNb2−xO9−δ复合钙钛矿型固体电解质性能研究[J]. 工程科学学报, 2021, 43(8): 1032-1036. doi: 10.13374/j.issn2095-9389.2020.12.03.003
引用本文: 丁玉石, 厉英. Ba3Ca1+xNb2−xO9−δ复合钙钛矿型固体电解质性能研究[J]. 工程科学学报, 2021, 43(8): 1032-1036. doi: 10.13374/j.issn2095-9389.2020.12.03.003
DING Yu-shi, LI Ying. Transport properties of Ba3Ca1+xNb2−xO9−δ composite perovskite oxides[J]. Chinese Journal of Engineering, 2021, 43(8): 1032-1036. doi: 10.13374/j.issn2095-9389.2020.12.03.003
Citation: DING Yu-shi, LI Ying. Transport properties of Ba3Ca1+xNb2−xO9−δ composite perovskite oxides[J]. Chinese Journal of Engineering, 2021, 43(8): 1032-1036. doi: 10.13374/j.issn2095-9389.2020.12.03.003

Ba3Ca1+xNb2−xO9−δ复合钙钛矿型固体电解质性能研究

doi: 10.13374/j.issn2095-9389.2020.12.03.003
基金项目: 国家自然科学基金资助项目(51774076,51834004,51704063)
详细信息
    通讯作者:

    E-mail:liying@mail.neu.edu.cn

  • 中图分类号: TF01;O77

Transport properties of Ba3Ca1+xNb2−xO9−δ composite perovskite oxides

More Information
  • 摘要: 高温质子导体固体电解质Ba3Ca1+xNb2−xO9−δ化学性质稳定,中低温电导率较高,具有较好的应用前景。采用固相合成法制备得到了复合钙钛矿相的Ba3Ca1+xNb2−xO9−δx=0、0.10、0.18、0.30)材料。随着Ca掺杂量的增加Ba3Ca1+xNb2−xO9−δ样品的电导率先增加后降低,x=0.18的样品电导率最高。Ba3Ca1+xNb2−xO9−δ材料在含氢中的电子空穴迁移数较低,当温度低于750 ℃时,材料中质子导电为主;当温度达800 ℃后,材料中氧离子导电为主。x=0.10的样品质子迁移数最高,随着掺杂量的增加样品氧离子迁移数逐渐增大,质子迁移数逐渐降低。

     

  • 图  1  在1600 ℃烧结10 h后的Ba3Ca1+xNb2−xO9−δx=0、0.10、0.18、0.30)样品的XRD图

    Figure  1.  XRD pattern of Ba3Ca1+xNb2−xO9−δ (x=0, 0.10, 0.18, and 0.30) specimen, sintered at 1600 ℃ for 10 h

    图  2  Ba3Ca1+xNb2−xO9−δx=0、0.10、0.18、0.30)样品的电导率随温度变化曲线

    Figure  2.  Temperature‒dependent conductivity of Ba3Ca1+xNb2−xO9−δ (x=0, 0.10, 0.18, and 0.30) specimen

    图  3  Ba3Ca1.18Nb1.82O9−δ样品的电导率随氧分压的变化曲线。(a)$ {P_{{{\rm{H}}_2}{\rm{O}}}}$=0.62 kPa;(b)$ {P_{{{\rm{H}}_2}{\rm{O}}}}$=3.17 kPa

    Figure  3.  Oxygen partial pressure‒dependent conductivity of Ba3Ca1.18Nb1.82O9−δ: (a) $ {P_{{{\rm{H}}_2}{\rm{O}}}}$=0.62 kPa; (b) $ {P_{{{\rm{H}}_2}{\rm{O}}}}$=3.17 kPa

    图  4  含氢气氛中Ba3Ca1+xNb2−xO9−δx=0、0.10、0.18、0.30)样品的载流子迁移数随温度变化曲线

    Figure  4.  Change in the proton, oxygen vacancy, and hole transport numbers of Ba3Ca1+xNb2−xO9−δ (x=0, 0.10, 0.18, and 0.30) in Ar−2%H2

  • [1] Kreuer K D. Proton-conducting oxides. Annu Rev Mater Res, 2003, 33(1): 333 doi: 10.1146/annurev.matsci.33.022802.091825
    [2] Marthinsen A, Wahnström G. Percolation transition in hole-conducting acceptor-doped Barium zirconate. Chem Mater, 2020, 32(13): 5558 doi: 10.1021/acs.chemmater.0c00515
    [3] Zhang J Y, Zhang Z T. Solid electrolyte based on perovskite-type BaCeO3 and SrCeO3. J Univ Sci Technol Beijing, 2000, 22(3): 249 doi: 10.3321/j.issn:1001-053X.2000.03.016

    张俊英, 张中太. BaCeO3和SrCeO3基钙钛矿型固体电解质. 北京科技大学学报, 2000, 22(3):249 doi: 10.3321/j.issn:1001-053X.2000.03.016
    [4] Zheng M H, Zhen X X, Zhao Z G. Preparation and characterization of Yb doped SrCeO3 based high temperature proton conductor. J Univ Sci Technol Beijing, 1993, 15(3): 310

    郑敏辉, 甄秀欣, 赵志刚. SrCeO3基高温质子导体的制备与性能测定. 北京科技大学学报, 1993, 15(3):310
    [5] Zhou Y, Guan X, Zhou H, et al. Strongly correlated perovskite fuel cells. Nature, 2016, 534(7606): 231 doi: 10.1038/nature17653
    [6] Bi L, Da'As E H, Shafi S P. Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte. Electrochem Commun, 2017, 80: 20 doi: 10.1016/j.elecom.2017.05.006
    [7] Xie D, Ling A, Yan D, et al. A comparative study on the composite cathodes with proton conductor and oxygen ion conductor for proton-conducting solid oxide fuel cell. Electrochimica Acta, 2020, 344: 136143 doi: 10.1016/j.electacta.2020.136143
    [8] Tong Y C, Wang Y, Cui C S, et al. Preparation and characterization of symmetrical protonic ceramic fuel cells as electrochemical hydrogen pumps. J Power Sources, 2020, 457: 228036 doi: 10.1016/j.jpowsour.2020.228036
    [9] Ishiyama T, Kishimoto H, Develos-Bagarinao K, et al. Correlation between dissolved protons in nickel-doped BaZr0.1Ce0.7Y0.1 Yb0.1O3−δ and its electrical conductive properties. Inorg Chem, 2017, 56(19): 11876 doi: 10.1021/acs.inorgchem.7b01875
    [10] Tong Y C, Meng X, Luo T, et al. Protonic ceramic electrochemical cell for efficient separation of hydrogen. ACS Appl Mater Interfaces, 2020, 12(23): 25809 doi: 10.1021/acsami.0c04024
    [11] Montaleone D, Mercadelli E, Escolástico S, et al. All-ceramic asymmetric membranes with superior hydrogen permeation. J Mater Chem A, 2018, 6(32): 15718 doi: 10.1039/C8TA04764B
    [12] Morejudo S H, Zanón R, Escolástico S, et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 2016, 353(6299): 563 doi: 10.1126/science.aag0274
    [13] Li Y, Wang C Z, Zhang Z L, et al. A hydrogen sensor using SrCe0.95Yb0.05O3−α as proton conductor and YHx+YH2−z as reference electrode for determining hydrogen pressure in solid steel. J Mater Sci Technol, 2010, 26(10): 957 doi: 10.1016/S1005-0302(10)60155-7
    [14] Kalyakin A S, Lyagaeva J G, Chuikin A Y, et al. A high-temperature electrochemical sensor based on CaZr0.95Sc0.05O3−δ for humidity analysis in oxidation atmospheres. J Solid State Electrochem, 2019, 23(1): 73 doi: 10.1007/s10008-018-4108-7
    [15] Ju L C, L Y, Man W K, et al. Preparation and property of silicon sensor auxiliary electrodes based on the CaF2—SiO2 system. Chin J Eng, 2016, 38(4): 476

    鞠靓辰, 李杨, 满文宽, 等. CaF2—SiO2型硅传感器辅助电极的制备及其定硅性能. 工程科技学报, 2016, 38(4):476
    [16] Zhu Z W, Guo E Y, Wei Z L, et al. Tailoring Ba3Ca1.18Nb1.82O9−δ with NiO as electrolyte for proton-conducting solid oxide fuel cells. J Power Sources, 2018, 373: 132 doi: 10.1016/j.jpowsour.2017.10.091
    [17] Jaiswal S K, Yoon K J, Son J W, et al. Synthesis and investigation on stability and electrical conductivity of Ti-doped Ba3CaTa2−xTixO9 (0≤x≤1.0) complex oxides. J Alloys Compd, 2019, 775: 736 doi: 10.1016/j.jallcom.2018.10.185
    [18] Wang S W, Chen Y, Fang S M, et al. Novel chemically stable Ba3Ca1.18Nb1.82−xYxO9−δ proton conductor: Improved proton conductivity through tailored cation ordering. Chem Mater, 2014, 26(6): 2021 doi: 10.1021/cm403684b
    [19] Ananyev M V, Farlenkov A S, Kurumchin E K. Isotopic exchange between hydrogen from the gas phase and proton-conducting oxides: Theory and experiment. Int J Hydrog Energy, 2018, 43(29): 13373 doi: 10.1016/j.ijhydene.2018.05.150
    [20] Sažinas R, Einarsrud M A, Grande T. Toughening of Y-doped BaZrO3 proton conducting electrolytes by hydration. J Mater Chem A, 2017, 5(12): 5846 doi: 10.1039/C6TA11022C
    [21] Bohn H G, Schober T, Mono T, et al. The high temperature proton conductor Ba3Ca1.18Nb1.82O9−δ. I. Electrical conductivity. Solid State Ionics, 1999, 117(3-4): 219 doi: 10.1016/S0167-2738(98)00420-2
    [22] Liang K C, Du Y, Nowick A S. Fast high-temperature proton transport in nonstoichiometric mixed perovskites. Solid State Ionics, 1994, 69(2): 117 doi: 10.1016/0167-2738(94)90399-9
    [23] Ding Y S, Li Y, Huang W L. Influence of grain interior and grain boundaries on transport properties of scandium-doped calcium zirconate. J Am Ceram Soc, 2020, 103(4): 2653 doi: 10.1111/jace.16968
    [24] Ding Y S, Li Y, Zhang C J, et al. Effect of grain interior and grain boundaries on transport properties of Sc-doped CaHfO3. J Alloys Compd, 2020, 834: 155126 doi: 10.1016/j.jallcom.2020.155126
    [25] Frade J R. Theoretical behaviour of concentration cells based on ABO3 perovskite materials with protonic and oxygen ion conduction. Solid State Ionics, 1995, 78(1-2): 87 doi: 10.1016/0167-2738(95)00008-T
  • 加载中
图(4)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  70
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-03
  • 网络出版日期:  2021-03-13
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回