• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于UDEC-GBM的矿物晶粒解理特征对硬岩石破坏过程的影响

胡小川 丁学正 苏国韶 廖满平

胡小川, 丁学正, 苏国韶, 廖满平. 基于UDEC-GBM的矿物晶粒解理特征对硬岩石破坏过程的影响[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.12.10.002
引用本文: 胡小川, 丁学正, 苏国韶, 廖满平. 基于UDEC-GBM的矿物晶粒解理特征对硬岩石破坏过程的影响[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.12.10.002
HU Xiao-chuan, DING Xue-zheng, SU Guo-shao, LIAO Man-ping. Effect of cleavage characteristics of mineral grains on the failure process of hard rock based on UDEC-GBM modeling[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.12.10.002
Citation: HU Xiao-chuan, DING Xue-zheng, SU Guo-shao, LIAO Man-ping. Effect of cleavage characteristics of mineral grains on the failure process of hard rock based on UDEC-GBM modeling[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.12.10.002

基于UDEC-GBM的矿物晶粒解理特征对硬岩石破坏过程的影响

doi: 10.13374/j.issn2095-9389.2020.12.10.002
基金项目: 国家自然科学基金资助项目(51869003);水利工程岩石力学广西高等学校高水平创新团队及卓越学者计划资助项目(202006)
详细信息
    通讯作者:

    E-mail: guoshaosu@gxu.edu.cn

  • 中图分类号: TV314

Effect of cleavage characteristics of mineral grains on the failure process of hard rock based on UDEC-GBM modeling

More Information
  • 摘要: 基于块体离散单元数值模拟方法(UDEC-GBM),以钾长石矿物颗粒为例,详细研究了矿物晶粒解理倾角、解理倾角围压效应及解理间距对硬质岩石力学性质、微观开裂过程及机理的影响,并探讨了解理特征在工程实际中可能带来的影响。数值研究结果表明:(1)晶粒解理具有明显倾角效应,当解理倾角由0°增加到90°时,岩石的弹性模量、单轴压缩强度及峰后脆延特征都会发生变化,穿晶总裂纹数受影响明显,主要体现在钾长石张拉穿晶裂纹显著增加,钾长石剪切裂纹数量在60°增加到最大值后减少,石英穿晶张拉裂纹数量也有明显变化,总体而言不断增加,而沿晶裂纹数量呈减少趋势,整个开裂过程仍以张拉沿晶主导;(2)晶粒解理倾角效应受围压影响,围压会导致沿晶裂纹和穿晶裂纹数量和二者比值发生变化,但不同倾角下围压对沿晶裂纹和穿晶裂纹数量和比值变化影响不一样;(3)当解理间距由2 mm增加到4 mm时,穿晶裂纹数量有增加趋势,而沿晶裂纹数量减少,总剪切和张拉裂纹数量比值不变,对岩石微观张拉、剪切破坏机制无明显影响。此外,具有解理结构的矿物晶粒含量较高且矿物晶粒本身性质对岩石性质及响应影响显著时,解理特征对板裂、岩爆等破坏的影响应给予重视。

     

  • 图  1  岩石材料

    Figure  1.  Rock material

    图  2  Voronoi模型和Trigon模型破坏路径比较

    Figure  2.  Comparison of potential failure paths between the Voronoi model and Trigon model

    图  3  模型配置

    Figure  3.  Model configuration

    图  4  本构关系

    Figure  4.  Constitutive relationship

    图  5  应力–应变曲线对比

    Figure  5.  Comparison of stress–strain curves

    图  6  破坏结果。(a)数值试件;(b)微观裂纹;(c)物理试验

    Figure  6.  Failure results: (a) numerical specimen; (b) microcracks; (c) physical test

    图  7  数值模型。(a)数值试件;(b)内部矿物晶粒;(c)解理倾角和间距定义

    Figure  7.  Numerical model: (a) numerical specimen; (b) mineral grains; (c) definition of cleavage angle and spacing

    图  8  不同解理倾角下单轴应力–应变曲线

    Figure  8.  Uniaxial stress–strain curves at different cleavage angles

    图  9  单轴抗压强度和弹性模量

    Figure  9.  Uniaxial compressive strength and elastic modulus

    图  10  90°解理倾角下总裂纹演化过程(T和S分别代表张拉和剪切开裂)

    Figure  10.  Evolution of the total crack at the 90° cleavage angle (T and S indicate tensile cracking and S cracking, respectively)

    图  11  穿晶裂纹和沿晶裂纹数量

    Figure  11.  Number of trans- and intergranular cracks

    图  12  微裂纹比例与解理倾角关系

    Figure  12.  Relationship between the crack ratio and cleavage angle

    图  13  不同类型穿晶裂纹数量(T和S分别代表张拉和剪切开裂)

    Figure  13.  Number of different transgranular cracks (T and S indicate tensile cracking and S cracking, respectively)

    图  14  不同解理倾角下宏观破坏。(a)0°;(b)20°;(c)40°;(d)60°;(e)90°;(f)单轴压缩试验结果

    Figure  14.  Macroscopic failure at different cleavage angles: (a) 0°; (b) 20°; (c) 40°; (d) 60°; (e) 90°; (f) test result under uniaxial compression

    图  15  应力–应变曲线(3 MPa)

    Figure  15.  Stress–strain curves at 3 MPa

    图  16  三轴抗压强度和弹性模量

    Figure  16.  Triaxial compressive strength and elastic modulus

    图  17  3 MPa时穿晶裂纹数量分布

    Figure  17.  Number of transgranular cracks at 3 MPa

    图  18  0 MPa时不同类型穿晶裂纹占总穿晶裂纹比例

    Figure  18.  Ratio of different types of transgranular cracks to the total transgranular cracks at 0 MPa

    图  19  3 MPa时不同类型穿晶裂纹占总穿晶裂纹比例

    Figure  19.  Ratio of different types of transgranular cracks to the total transgranular cracks at 3 MPa

    图  20  3 MPa时穿晶裂纹和沿晶裂纹数量

    Figure  20.  Number of trans- and intergranular cracks at 3 MPa

    图  21  3 MPa时微裂纹比例与解理倾角关系

    Figure  21.  Crack ratio at different cleavage angles (3 MPa)

    图  22  不同解理间距下单轴应力–应变曲线

    Figure  22.  Uniaxial stress–strain curves at different cleavage spacings

    图  23  不同解理间距下的穿晶裂纹数量

    Figure  23.  Transgranular cracks at different cleavage spacings

    图  24  不同解理间距下的裂纹数量

    Figure  24.  Number of cracks at different cleavage spacings

    图  25  不同解理间距下裂纹比例

    Figure  25.  Crack ratio at different cleavage spacings

    图  26  解理对开裂的影响

    Figure  26.  Influence of cleavage on cracking

    表  1  基本物理与力学参数

    Table  1.   Basic physical and mechanical parameters

    Density/
    (kg·m−3)
    Uniaxial compressive
    strength/MPa
    Elastic modulus/
    GPa
    P, wave
    velocity/(km·s−1)
    268711532.24.5
    下载: 导出CSV

    表  2  矿物晶粒物理、力学参数

    Table  2.   Physical and mechanical parameters of grains

    Grain typePercentage/%ρ/(g·cm–3)Sh/GPaBu/GPaυ
    Q272,65044.037.00.08
    B52,85012.441.10.36
    K582,56027.253.70.28
    P102,63029.350.80.26
    Note: Q, B, K and P represent quartz, biotite, K-feldspar and plagioclase respectively; υ represents Poisson's ratio; Bu, Sh and ρ represent bulk modulus, shear plane modulus and density respectively.
    下载: 导出CSV

    表  3  加载钢板参数

    Table  3.   Properties of the loading platens

    Bu/GPaSh/GPaρ/(kg·m−3)
    15715117857800
    下载: 导出CSV

    表  4  接触微观参数

    Table  4.   Microparameter of contacts

    Contact typeMicroparameter of contacts
    kn/
    (GPa·m–1)
    ks/
    (GPa·m–1)
    cp/
    MPa
    φp/
    (º)
    $ {\tau _{{\text{max}}}} $/
    MPa
    Q-Q7200036000803548
    B-B4174020870523535
    K-K5217526087703540
    P-P6261031305753544
    Intergranular contact3487017392504214
    Note: Intergranular parameters are uniformly set between grains, and different parameters are set inside grains (such as Q-Q); the residual cohesion, friction angle and tensile strength of intracrystalline and intergranular contact are set to 0.
    下载: 导出CSV

    表  5  参数校核结果

    Table  5.   Calibrated results of properties

    ItemE/GPaUCS/MPaσTσci/UCSσcd/UCSυ
    UDEC-GBM33.5116.50.360.860.25
    Tests32.7115.46.70.24
    Error/%2.45%0.95%4.17%
    Note: E, UCS σT, σci and σcd represent the elastic modulus, uniaxial compressive strength, crack initiation stress and damage stress of granite specimens respectively.
    下载: 导出CSV
  • [1] Qian Q H. Challenges faced by underground projects construction safety and countermeasures. Chin J Rock Mech Eng, 2012, 31(10): 1945 doi: 10.3969/j.issn.1000-6915.2012.10.001

    钱七虎. 地下工程建设安全面临的挑战与对策. 岩石力学与工程学报, 2012, 31(10):1945 doi: 10.3969/j.issn.1000-6915.2012.10.001
    [2] Cai M, Kaiser P K, Tasaka Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci, 2004, 41(5): 833 doi: 10.1016/j.ijrmms.2004.02.001
    [3] Martin C D, Christiansson R, Söderhäll J. Rock Stability Considerations for Siting and Constructing a KBS-3 Repository: Based on Experiences from Aespoe HRL, AECL's URL, Tunnelling and Mining. Stockholm: Swedish Nuclear Fuel and Waste Management Co., 2001
    [4] Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr, 1994, 31(6): 643 doi: 10.1016/0148-9062(94)90005-1
    [5] Feng X T, Chen B R, Zhang C Q, et al. Mechanism, Warning and Dynamic Control of Rockburst Development Processes. Beijing: Science Press, 2013

    冯夏庭, 陈炳瑞, 张传庆, 等. 岩爆孕育过程的机制、预警与动态调控. 北京: 科学出版社, 2013
    [6] Diederichs M S, Kaiser P K, Eberhardt E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci, 2004, 41(5): 785 doi: 10.1016/j.ijrmms.2004.02.003
    [7] Potyondy D. A grain-based model for rock: approaching the true microstructure // Proceedings of Rock Mechanics in the Nordic Countries. Kongsberg, 2010: 9
    [8] Jiang M J, Bai R P, Liu J D, et al. Experimental study of inter-granular particles bonding behaviors for rock microstructure. Chin J Rock Mech Eng, 2013, 32(6): 1121 doi: 10.3969/j.issn.1000-6915.2013.06.005

    蒋明镜, 白闰平, 刘静德, 等. 岩石微观颗粒接触特性的试验研究. 岩石力学与工程学报, 2013, 32(6):1121 doi: 10.3969/j.issn.1000-6915.2013.06.005
    [9] Peng J, Wong L N Y, Teh C I. Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. J Geophys Res Solid Earth, 2017, 122(2): 1054 doi: 10.1002/2016JB013469
    [10] Gao F Q, Stead D. The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int J Rock Mech Min Sci, 2014, 68: 1 doi: 10.1016/j.ijrmms.2014.02.003
    [11] He J. Clastic Rock Flake Identification Guide. Beijing: Petroleum Industry Press, 2019

    贺静. 碎屑岩薄片鉴定指南. 北京: 石油工业出版社, 2019
    [12] Lim S S, Martin C D, Åkesson U. In-situ stress and microcracking in granite cores with depth. Eng Geol, 2012, 147-148: 1 doi: 10.1016/j.enggeo.2012.07.006
    [13] Wang X, Cai M. A comprehensive parametric study of grain-based models for rock failure process simulation. Int J Rock Mech Min Sci, 2019, 115: 60 doi: 10.1016/j.ijrmms.2019.01.008
    [14] Haimson B, Chang C. A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite. Int J Rock Mech Min Sci, 2000, 37(1-2): 285 doi: 10.1016/S1365-1609(99)00106-9
    [15] Tao M, Wang J, Li Z W, et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads. Chin J Rock Mech Eng, 2019, 38(11): 2172

    陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口细–微观试验研究. 岩石力学与工程学报, 2019, 38(11):2172
    [16] Abdelaziz A, Zhao Q, Grasselli G. Grain based modelling of rocks using the combined finite-discrete element method. Comput Geotech, 2018, 103: 73 doi: 10.1016/j.compgeo.2018.07.003
    [17] Itasca Consulting Group Inc. UDEC (niversal Distinct Element Code). Version 6.0. Mineapolis, Itasca, 2014
    [18] Wang X, Cai M. Modeling of brittle rock failure considering inter- and intra-grain contact failures. Comput Geotech, 2018, 101: 224 doi: 10.1016/j.compgeo.2018.04.016
    [19] Gao F Q, Stead D, Elmo D. Numerical simulation of microstructure of brittle rock using a grain-breakable distinct element grain-based model. Comput Geotech, 2016, 78: 203 doi: 10.1016/j.compgeo.2016.05.019
    [20] Cho N, Martin C D, Sego D C. A clumped particle model for rock. Int J Rock Mech Min Sci, 2007, 44(7): 997 doi: 10.1016/j.ijrmms.2007.02.002
    [21] Yoon J. Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J Rock Mech Min Sci, 2007, 44(6): 871 doi: 10.1016/j.ijrmms.2007.01.004
    [22] Liang Z Z, Tang C A, Li H X, et al. A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression. Rock Soil Mech, 2005, 26(1): 57 doi: 10.3969/j.issn.1000-7598.2005.01.012

    梁正召, 唐春安, 李厚祥, 等. 单轴压缩下横观各向同性岩石破裂过程的数值模拟. 岩土力学, 2005, 26(1):57 doi: 10.3969/j.issn.1000-7598.2005.01.012
    [23] Gong F Q, Luo Y, Li X B, et al. Experimental simulation investigation on rockburst induced by spalling failure in deep circular tunnels. Tunn Undergr Space Technol, 2018, 81: 413 doi: 10.1016/j.tust.2018.07.035
    [24] Duan K, Kwok C Y, Ma X. DEM simulations of sandstone under true triaxial compressive tests. Acta Geotech, 2017, 12(3): 495 doi: 10.1007/s11440-016-0480-6
    [25] Chen W Z, Lu S P, Guo X H, et al. Research on unloading confining pressure tests and rockburst criterion based on energy theory. Chin J Rock Mech Eng, 2009, 28(8): 1530 doi: 10.3321/j.issn:1000-6915.2009.08.003

    陈卫忠, 吕森鹏, 郭小红, 等. 基于能量原理的卸围压试验与岩爆判据研究. 岩石力学与工程学报, 2009, 28(8):1530 doi: 10.3321/j.issn:1000-6915.2009.08.003
    [26] Hu X C, Su G S, Chen G Y, et al. Experimental study on slabbing process of hard rock in deep tunnels. Chin J Geotech Eng, 2020, 42(12): 2271
  • 加载中
图(26) / 表(5)
计量
  • 文章访问数:  193
  • HTML全文浏览量:  207
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-10
  • 网络出版日期:  2021-03-02

目录

    /

    返回文章
    返回