• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于耐震时程法的连续刚构桥地震损伤分析

李军 石岩 张奋杰 王军文 黄兆国

李军, 石岩, 张奋杰, 王军文, 黄兆国. 基于耐震时程法的连续刚构桥地震损伤分析[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.12.11.001
引用本文: 李军, 石岩, 张奋杰, 王军文, 黄兆国. 基于耐震时程法的连续刚构桥地震损伤分析[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.12.11.001
LI Jun, SHI Yan, ZHANG Fen-jie, WANG Jun-wen, HUANG Zhao-guo. Application of the endurance time method to the seismic analysis and damage evaluation of a continuous rigid-frame bridge[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.12.11.001
Citation: LI Jun, SHI Yan, ZHANG Fen-jie, WANG Jun-wen, HUANG Zhao-guo. Application of the endurance time method to the seismic analysis and damage evaluation of a continuous rigid-frame bridge[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.12.11.001

基于耐震时程法的连续刚构桥地震损伤分析

doi: 10.13374/j.issn2095-9389.2020.12.11.001
基金项目: 国家自然科学基金资助项目(51908265,51768042);红柳优秀青年人才计划资助项目(04-061810);河北省自然科学基金资助项目(E2019210215);道路与铁道工程安全保障省部共建教育部重点实验室资助项目(STKF201904)
详细信息
    通讯作者:

    E-mail: syky86@163.com

  • 中图分类号: U448.23

Application of the endurance time method to the seismic analysis and damage evaluation of a continuous rigid-frame bridge

More Information
  • 摘要: 探讨了在真实成桥内力状态下,耐震时程法(Endurance time method,ETM)评估连续刚构桥地震反应与损伤的准确性和有效性. 以一座典型非规则连续刚构桥为背景,采用MIDAS/Civil模拟实际施工过程,经施工阶段分析得到10 a收缩徐变下的成桥内力状态,再借助等效荷载法建立考虑成桥内力状态的OpenSees动力分析模型;通过与天然地震动下的增量动力分析(Incremental dynamic analysis,IDA)结果相对比,验证了采用ETM可快速准确地得到地震反应的适用性;通过该方法分析了墩顶位移、梁端位移及碰撞力等地震反应,并采用位移延性系数和Park‒Ang损伤指数对桥墩损伤进行了量化分析与评估. 结果表明:ETM可以有效地预测真实成桥内力状态下连续刚构桥达到某一损伤程度的时间;耐震时间较短时主桥桥墩较引桥桥墩的损伤要小,耐震时间较长时则反之.

     

  • 图  1  3条ETA曲线(a)及其加速度反应谱曲线(b)

    Figure  1.  Three ETA curves (a) and corresponding acceleration response spectra (b)

    图  2  7条天然地震动反应谱及其与目标反应谱的对比

    Figure  2.  Comparison for individual, mean and target response spectra of seven natural ground motions

    图  3  大跨高墩连续刚构桥的构造形式与截面尺寸(单位:cm)

    Figure  3.  Structural forms and section details of a long-span continuous rigid-frame bridge with high piers (unit: cm)

    图  4  全桥动力分析模型

    Figure  4.  Dynamic analysis model of the bridge

    图  5  桥墩墩顶位移时程曲线

    Figure  5.  Displacement–time history of the top of the piers

    图  6  3#墩处墩梁相对位移时程曲线

    Figure  6.  Relative displacement–time history between pier and girder at pier 3#

    图  7  伸缩缝间碰撞力时程曲线

    Figure  7.  Pounding force–time history at the expansion joints

    图  8  桥墩位移时程曲线. (a) 1#墩;(b) 6#

    Figure  8.  Displacement–time history of piers: (a) pier 1#; (b) pier 6#

    图  9  梁端位移时程曲线. (a)主桥;(b)引桥

    Figure  9.  Displacement–time history of the top of the girders: (a) main bridge; (b) approach bridge

    图  10  伸缩缝处碰撞力时程曲线. (a) 3#墩;(b) 7#

    Figure  10.  Pounding force–time history of the expansion joints: (a) pier 3#; (b) pier 7#

    图  11  桥墩位移延性系数. (a)1#墩;(b)6#

    Figure  11.  Displacement ductility factors of piers: (a) pier 1#; (b) pier 6#

    图  12  桥墩Park‒Ang损伤指数. (a)1#墩;(b)6#

    Figure  12.  Park–Ang damage index of piers: (a) pier 1#; (b) pier 6#

    表  1  前5阶自振周期

    Table  1.   First five-order natural vibration periods s

    Modal orderTMTOMode description
    14.103.91The main bridge vibrates along the transverse bridge direction
    23.403.25The whole bridge vibrates along the longitudinal bridge direction
    32.642.55Second-order vibration of the main bridge along the transverse bridge
    42.452.47The approach bridge vibrates along the longitudinal bridge direction
    51.831.86The main bridge and approach bridge vibrate in different directions along the longitudinal bridge
    下载: 导出CSV
  • [1] Fan L C. Bridge Seismic Design. Shanghai: Tongji University Press, 1997

    范立础. 桥梁抗震. 上海: 同济大学出版社, 1997
    [2] Wang H L, Xie C L, Liu D, et al. Continuous reinforced concrete rigid-frame bridges in China. Pract Period Struct Des Constr, 2019, 24(2): 05019002 doi: 10.1061/(ASCE)SC.1943-5576.0000421
    [3] Peng Y C, Zhang Z X. Development of a novel type of open-web continuous reinforced-concrete rigid-frame bridge. J Bridge Eng, 2020, 25(8): 05020005 doi: 10.1061/(ASCE)BE.1943-5592.0001595
    [4] Li J Z, Guan Z G. Research progress on bridge seismic design: Target from seismic alleviation to post-earthquake structural resilience. China J Highw Transp, 2017, 30(12): 1

    李建中, 管仲国. 桥梁抗震设计理论发展: 从结构抗震减震到震后可恢复设计. 中国公路学报, 2017, 30(12):1
    [5] Shi Y, Wang D S, Sun Z G. Analysis of seismic response of seismically mitigated and isolated bridge subjected to near-fault ground motion. Bridge Constr, 2014, 44(3): 19

    石岩, 王东升, 孙治国. 近断层地震动下减隔震桥梁地震反应分析. 桥梁建设, 2014, 44(3):19
    [6] Wang D S, An Z H, Sun Z G, et al. Lead core heating effects on seismic response of isolated bridges. J Basic Sci Eng, 2020, 28(5): 1172

    王东升, 安正汉, 孙治国, 等. 铅芯温度效应对隔震桥梁地震反应影响研究. 应用基础与工程科学学报, 2020, 28(5):1172
    [7] Hui Y X, Mao M J, Liu H F, et al. Influence of structural seismic response of bridges crossing active fault. J Jilin Univ (Eng Technol Ed), 2018, 48(6): 1725

    惠迎新, 毛明杰, 刘海峰, 等. 跨断层桥梁结构地震响应影响. 吉林大学学报(工学版), 2018, 48(6):1725
    [8] Chen L S, Zhuang W L, Zhao H Q, et al. Report on Highways Damage in the Wenchuan Earthquake: Bridges. Beijing: China Communications Press, 2012

    陈乐生, 庄卫林, 赵河清, 等. 汶川大地震公路震害调查: 桥梁. 北京: 人民交通出版社, 2012
    [9] Pan Z F, Fu C C, Jiang Y. Uncertainty analysis of creep and shrinkage effects in long-span continuous rigid frame of sutong bridge. J Bridge Eng, 2011, 16(2): 248 doi: 10.1061/(ASCE)BE.1943-5592.0000147
    [10] Shi Y, Zhang F J, Han J P, et al. Seismic damage analysis of a long-span continuous rigid frame bridge with high piers during typical construction stages. J Vib Shock, 2020, 39(22): 89

    石岩, 张奋杰, 韩建平, 等. 高墩大跨度连续刚构桥典型施工阶段地震损伤分析. 振动与冲击, 2020, 39(22):89
    [11] Zhao Y W, Liu Y Q, Yang S P, et al. An improved Bouc‒Wen model for describing hysteretic characteristics of shock absorbers. Chin J Eng, 2020, 42(10): 1352

    赵义伟, 刘永强, 杨绍普, 等. 一种描述减振器滞回特性的Bouc‒Wen改进模型. 工程科学学报, 2020, 42(10):1352
    [12] Yu J, Lü X B, Qin Y J. Experimental study on concrete beams without web reinforcement based on fractal theory. Chin J Eng, 2021, 43(10): 1385

    于江, 吕旭滨, 秦拥军. 基于分形理论无腹筋混凝土梁的受剪性能. 工程科学学报, 2021, 43(10):1385
    [13] Basim M C, Estekanchi H E. Application of endurance time method in performance-based optimum design of structures. Struct Saf, 2015, 56: 52 doi: 10.1016/j.strusafe.2015.05.005
    [14] Maleki-Amin M J, Estekanchi H E. Damage estimation of steel moment-resisting frames by endurance time method using damage-based target time. J Earthq Eng, 2018, 22(10): 1806 doi: 10.1080/13632469.2017.1297265
    [15] Bai J L, Jin S S, Zhao J X, et al. Seismic performance evaluation of soil-foundation-reinforced concrete frame systems by endurance time method. Soil Dyn Earthq Eng, 2019, 118: 47 doi: 10.1016/j.soildyn.2018.12.011
    [16] Guo A X, Shen Y, Bai J L, et al. Application of the endurance time method to the seismic analysis and evaluation of highway bridges considering pounding effects. Eng Struct, 2017, 131: 220 doi: 10.1016/j.engstruct.2016.11.009
    [17] He H F, Wei K, Zhang J R, et al. Application of endurance time method to seismic fragility evaluation of highway bridges considering scour effect. Soil Dyn Earthq Eng, 2020, 136: 106243 doi: 10.1016/j.soildyn.2020.106243
    [18] Shen Y, Tan H S, Wang X Z, et al. Application of the endurance time method to seismic-induced pounding analysis for long-span extradosed cable-stayed bridges considering wave passage effects. Eng Mech, 2020, 37(3): 131

    沈禹, 谈华顺, 王献挚, 等. 考虑行波效应的大跨度矮塔斜拉桥耐震时程分析. 工程力学, 2020, 37(3):131
    [19] Hao C W, Chen Y J, He H X, et al. The endurance time method in the seismic analysis of the continual rigid-bridge with high piers. J Disaster Prev Mitig Eng, 2017, 37(2): 215

    郝朝伟, 陈彦江, 何浩祥, 等. 耐震时程法在高墩刚构桥抗震分析中的应用. 防灾减灾工程学报, 2017, 37(2):215
    [20] Wang D S, Feng Q M, Wang G X. A modified Park‒Ang seismic damage model considering low-cycle fatigue life. China Civ Eng J, 2004, 37(11): 41

    王东升, 冯启民, 王国新. 考虑低周疲劳寿命的改进Park‒Ang地震损伤模型. 土木工程学报, 2004, 37(11):41
    [21] Ministry of Transport of the People’s Republic of China. JTG/T B02-01—2008 Specifications for Seismic Design of Highway Bridges. Beijing: China Communications Press, 2008

    中华人民共和国交通运输部. JTG/T B02-01—2008公路桥梁抗震设计细则. 北京: 人民交通出版社, 2008
    [22] Bai J L. Main Seismic Failure Mode Analyses and Optimization of Reinforced Concrete Frame Structures [Dissertation]. Harbin: Harbin Institute of Technology, 2015

    白久林. 钢筋混凝土框架结构地震主要失效模式分析与优化[学位论文]. 哈尔滨: 哈尔滨工业大学, 2015
    [23] Li J. Seismic Response and Fragility Analysis of Long-Span Continuous Rigid-Frame Bridge with High-Rise Piers Considering Internal Force State [Dissertation]. Lanzhou:Lanzhou University of Technology, 2021: 33

    李军. 考虑内力状态的大跨高墩连续刚构桥地震反应及易损性分析[学位论文]. 兰州:兰州理工大学, 2021:33
    [24] Zhao D H, Liu Y, Li H N, et al. Modified Hertz-damp model for base-isolated structural pounding. J Vib Shock, 2017, 36(12): 236

    赵大海, 刘勇, 李宏男, 等. 隔震结构碰撞分析的改进Hertz-damp模型. 振动与冲击, 2017, 36(12):236
    [25] Hwang H, Liu J B. Seismic fragility analysis of reinforced concrete bridges. China Civ Eng J, 2004, 37(6): 47

    Hwang H, 刘晶波. 地震作用下钢筋混凝土桥梁结构易损性分析. 土木工程学报, 2004, 37(6):47
    [26] Hindi R A, Sexsmith R G. A proposed damage model for RC bridge columns under cyclic loading. Earthq Spec, 2001, 17(2): 261 doi: 10.1193/1.1586175
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  81
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-11
  • 网络出版日期:  2021-06-18

目录

    /

    返回文章
    返回