• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热损伤岩石物理力学特性演化机制研究进展

吴星辉 李鹏 郭奇峰 蔡美峰 任奋华 张杰

吴星辉, 李鹏, 郭奇峰, 蔡美峰, 任奋华, 张杰. 热损伤岩石物理力学特性演化机制研究进展[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.12.23.007
引用本文: 吴星辉, 李鹏, 郭奇峰, 蔡美峰, 任奋华, 张杰. 热损伤岩石物理力学特性演化机制研究进展[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.12.23.007
WU Xing-hui, LI Peng, GUO Qi-feng, CAI Mei-feng, REN Fen-hua, ZHANG Jie. Research progress on the evolution of physical and mechanical properties of thermally damaged rock[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.12.23.007
Citation: WU Xing-hui, LI Peng, GUO Qi-feng, CAI Mei-feng, REN Fen-hua, ZHANG Jie. Research progress on the evolution of physical and mechanical properties of thermally damaged rock[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.12.23.007

热损伤岩石物理力学特性演化机制研究进展

doi: 10.13374/j.issn2095-9389.2020.12.23.007
基金项目: 国家自然科学基金资助项目(52074020);中央高校基本科研业务费专项资金资助项目(FRF-TP-20-041A1);国家重点研发计划资助项目(2017YFC0804103)
详细信息
    通讯作者:

    E-mail:caimeifeng@ustb.edu.cn

  • 中图分类号: TU452

Research progress on the evolution of physical and mechanical properties of thermally damaged rock

More Information
  • 摘要: 为深入了解温度作用下岩石热损伤演化机制,对超深钻探、深地实验室、核废料处置库、地热资源开发等地下岩体工程的安全性和稳定性做出合理性评价,本文通过分析整理国内外文献,系统综述了温度作用下岩体变形破坏方面的研究进展与成果。简述了高温作用下岩石的物理力学特性,侧重总结了岩石物理力学参量随温度变化的演化规律。重点分析了深部岩石材料在高温条件下岩体结构及相关物理场探测技术的最新研究成果,梳理了声发射(AE)、超声波(UT)、X射线分析(XRD)、偏光显微镜(PM)、扫描电子显微镜(SEM)、核成像技术(NMR)以及CT扫描技术等先进的辅助试验设备在热破裂分析中的应用。归纳总结了国内外学者采用的热力耦合模型和数值分析方法及适用条件,简略阐述了温度作用下岩石力学参量变异性特征。最后,指出了当前岩石热损伤研究中存在的一些局限性,并从深部地下工程建设方面展望了未来的发展方向,即多尺度、多场−相探究岩石热损伤机理,宏−细−微观角度系统分析岩石热损伤演化规律。

     

  • 图  1  岩石孔隙度随温度的变化特征[5]。(a)灰岩;(b)砂岩;(c)花岗岩

    Figure  1.  Variation characteristics of rock porosity with temperature[5]: (a) limestone; (b) sandstone; (c) granite

    图  2  高温热处理后灰岩纵波波速随温度的变化(a),以及随循环次数的变化(b)[10]

    Figure  2.  Changes in the P-wave velocity with (a) temperature and (b) cycle time of limestone after high-temperature heat treatment[10]

    图  3  石灰岩弹性模量和峰值应力随温度变化[13]

    Figure  3.  Variation of the elastic modulus and peak stress of limestone with temperature[13]

    图  4  花岗岩破坏特征(600 ℃)[22]。(a)全貌;(b)局部

    Figure  4.  Failure features of the granite sample subjected to a temperature of 600 ℃[22]: (a) whole; (b) part

    图  5  岩石热冲击破裂试验台[27]

    Figure  5.  Rock thermal shock test bench[27]

    图  6  彭水页岩微观结构图[47]。(a)50 ℃;(b)500 ℃

    Figure  6.  SEM photographs of Pengshui shale[47]: (a) 50 ℃;(b) 500 ℃

    图  7  高温疲劳作用下的砂岩断口图[49]。(a)150 ℃;(b)200 ℃;(c)200 ℃;(d)300 ℃

    Figure  7.  Fracturing of sandstone under high temperature fatigue[49]: (a) 150 ℃; (b) 200 ℃; (c) 200 ℃;(d) 300 ℃

    图  8  岩石热力耦合损伤过程[54]

    Figure  8.  Process of rock damage under thermomechanical coupling[54]

    表  1  高温作用下岩石力学参数变化规律汇总表[28]

    Table  1.   Summary of changes in the mechanical parameters of the rock subjected to high temperature[28]

    Heating temperature/℃Cooling methodUniaxial compressive strengthElastic modulusPeak strainPoisson ratioReferences
    20-800Cooling in furnaceDecrease generallyDecrease generallyIncrease generallyDecrease generallyReference [29]
    20−800Cooling in furnaceDecreaseDecreaseReference [30]
    20−800Cooling in airDecreaseDecreaseDecreaseReference [31]
    25−1300Cooling in airDecreaseDecreaseReference [32]
    20−1000Cooling in furnaceDecreaseDecreaseIncreaseReference [33]
    23−800Cooling in air/waterDecrease generallyIncrease-decreaseDecrease - IncreaseReference [34]
    25−500(5 ℃·min−1Decrease Increase-decreaseReference [35]
    25−800Cooling in furnaceDecreaseDecreaseDecrease generallyReference [36]
    25−800Cooling in airIncrease-decreaseIncrease-decreaseIncreaseNearly constantReference [37]
    20−800Cooling in furnace/waterDecreaseDecreaseIncrease generallyReference [38]
    25−900Cooling in waterIncrease-decreaseIncrease-decreaseIncrease generallyFluctuateReference [39]
    25−1000Cooling in air/waterDecrease generallyDecrease generallyIncrease generallyIncrease generallyReference [40]
    下载: 导出CSV
  • [1] Xie H P, Gao F, Ju Y, et al. Theoretical and technological conception of the fluidization mining for deep coal resources. J China Coal Soc, 2017, 42(3): 547

    谢和平, 高峰, 鞠杨, 等. 深地煤炭资源流态化开采理论与技术构想. 煤炭学报, 2017, 42(3):547
    [2] Im K, Avouac J P. Investigating the role of thermal stresses on induced seismicity//SEG International Exposition and 90th Annual Meeting. Houston, 2020: 1335
    [3] Bauer S J, Johnson B. Effects of slow uniform heating on the physical properties of the westerly and charcoal granites//20th U S Symposium on Rock Mechanics (USRMS). Austin, 1979: ARMA-79-0007
    [4] Trice R, Warren N. Preliminary study on the correlation of acoustic velocity and permeability in two granodiorites from the LASL Fenton Hill deep borehole, GT-2, near the Valles Caldera, New Mexico [J/OL]. Los Alamos Scientific Lab (1977-07-01) [2020-12-20]. https://www.osti.gov/biblio/7219183
    [5] Zhang W Q. Study on the Microscopic Mechanism of Rock Thermal Damage and the Evolution Characteristics of Macroscopic Physical and Mechanical Properties—Taking Typical Rock as an Example [Dissertation]. Xuzhou: China University of Mining and Technology, 2017

    张卫强. 岩石热损伤微观机制与宏观物理力学性质演变特征研究—以典型岩石为例[学位论文]. 徐州: 中国矿业大学, 2017
    [6] Zhang S Q, Paterson M S, Cox S F. Microcrack growth and healing in deformed calcite aggregates. Tectonophysics, 2001, 335(1-2): 17 doi: 10.1016/S0040-1951(01)00043-9
    [7] Jin P H, Hu Y Q, Shao J X, et al. Experimental study on physico-mechanical and transport properties of granite subjected to rapid cooling. Chin J Rock Mech Eng, 2018, 37(11): 2556

    靳佩桦, 胡耀青, 邵继喜, 等. 急剧冷却后花岗岩物理力学及渗透性质试验研究. 岩石力学与工程学报, 2018, 37(11):2556
    [8] Zhao Z D, Gao S, Luo T C, et al. Origin of the crustal low velocity layer of Qinling and North China evidence from laboratory measurement of p-wave velocity in rocks at high pt conditions. Chin J Geophys, 1996, 39(5): 642 doi: 10.3321/j.issn:0001-5733.1996.05.007

    赵志丹, 高山, 骆庭川, 等. 秦岭和华北地区地壳低速层的成因探讨──岩石高温高压波速实验证据. 地球物理学报, 1996, 39(5):642 doi: 10.3321/j.issn:0001-5733.1996.05.007
    [9] Xi D Y, Xie R, Yi L K, et al. Effect of temperature on rock modulus and wave velocity//Proceedings of the 6th National Academic Conference on Rock Dynamics. Kunming, 1998: 31

    席道瑛, 谢端, 易良坤, 等. 温度对岩石模量和波速的影响//第六届全国岩石动力学学术会议文集. 昆明, 1998: 31
    [10] Hu J J. Study on Thermal Damage Characteristics of Limestone under High Temperature [Dissertation]. Xuzhou: China University of Mining and Technology, 2019

    胡建军. 高温作用下石灰岩的热损伤特性研究[学位论文]. 徐州: 中国矿业大学, 2019
    [11] Aurangzeb, Khan L A, Maqsood A. Prediction of effective thermal conductivity of porous consolidated media as a function of temperature: A test example of limestones. J Phys D:Appl Phys, 2007, 40(16): 4953 doi: 10.1088/0022-3727/40/16/030
    [12] Zhang J H, Wang J T, Zhao A G. Fracture properies of granite at high temperature. Rock Soil Mech, 1987, 8(4): 11

    张静华, 王靖涛, 赵爱国. 高温下花岗岩断裂特性的研究. 岩土力学, 1987, 8(4):11
    [13] Zhang L Y, Mao X B, Yang Y, et al. Experiment study on mechanical properties of limestone at high temperature. J Liaoning Tech Univ, 2006, 25(Suppl 2): 121

    张连英, 茅献彪, 杨逾, 等. 高温状态下石灰岩力学性能实验研究. 辽宁工程技术大学学报, 2006, 25(增刊2): 121
    [14] Oda M. Modern developments in rock structure characterization. Compr Rock Eng, 1993, 1: 185
    [15] Xu X C. Preliminary study on Mechanical Properties and Damage Characteristics of Granite in Three Gorges under Temperature [Dissertation]. Wuhan: Institute of Rock and Soil Mechanics, Chinese Academy of sciences, 1998

    许锡昌. 温度作用下三峡花岗岩力学性质及损伤特性初步研究[学位论文]. 武汉: 中国科学院武汉岩土力学研究所, 1998
    [16] Yang S Q, Xu P, Li Y B, et al. Experimental investigation on triaxial mechanical and permeability behavior of sandstone after exposure to different high temperature treatments. Geothermics, 2017, 69: 93 doi: 10.1016/j.geothermics.2017.04.009
    [17] Su C D, Wei S J, Yang Y S, et al. Analysis of strength and conventional triaxial compression deformation characters of coarse sandstone after high temperature. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2792

    苏承东, 韦四江, 杨玉顺, 等. 高温后粗砂岩常规三轴压缩变形与强度特征分析. 岩石力学与工程学报, 2015, 34(增刊1): 2792
    [18] Su C D, Wei S J, Qin B D, et al. Experimental study of influence mechanism of high temperature on mechanical properties of fine-grained sandstone. Rock Soil Mech, 2017, 38(3): 623

    苏承东, 韦四江, 秦本东, 等. 高温对细砂岩力学性质影响机制的试验研究. 岩土力学, 2017, 38(3):623
    [19] Wu J W, Zhao Y S, Wan Z J, et al. Experimental study of acoustic emission of granite due to thermal cracking under high temperature and isostatic stress. J China Coal Soc, 2012, 37(7): 1111

    武晋文, 赵阳升, 万志军, 等. 高温均匀压力花岗岩热破裂声发射特性实验研究. 煤炭学报, 2012, 37(7):1111
    [20] Kumari W G P, Ranjith P G, Perera M S A, et al. Mechanical behaviour of Australian Strathbogie granite under in situ stress and temperature conditions: An application to geothermal energy extraction. Geothermics, 2017, 65: 44 doi: 10.1016/j.geothermics.2016.07.002
    [21] Wan Z J, Zhao Y S, Dong F K, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses. Chin J Rock Mech Eng, 2008, 27(1): 72 doi: 10.3321/j.issn:1000-6915.2008.01.011

    万志军, 赵阳升, 董付科, 等. 高温及三轴应力下花岗岩体力学特性的实验研究. 岩石力学与工程学报, 2008, 27(1):72 doi: 10.3321/j.issn:1000-6915.2008.01.011
    [22] Ding Q L, Ju F, Mao X B, et al. Experimental investigation of the mechanical behavior in unloading conditions of sandstone after high-temperature treatment. Rock Mech Rock Eng, 2016, 49(7): 2641 doi: 10.1007/s00603-016-0944-x
    [23] Han G S, Jing H W, Su H J, et al. Experimental research on mechanical behaviors of water-cooled sandstone after high temperature treament. J China Univ Min Technol, 2020, 49(1): 69

    韩观胜, 靖洪文, 苏海健, 等. 高温状态砂岩遇水冷却后力学行为研究. 中国矿业大学学报, 2020, 49(1):69
    [24] Yu Y, Xu D, Dou B, et al. Experimental study on drillability of high temperature granite after water cooling. Geol Sci Technol Inf, 2019, 38(4): 287

    喻勇, 徐达, 窦斌, 等. 高温花岗岩遇水冷却后可钻性试验研究. 地质科技情报, 2019, 38(4):287
    [25] Zhang F, Zhao J J, Hu D W, et al. Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mech Rock Eng, 2018, 51(3): 677 doi: 10.1007/s00603-017-1350-8
    [26] Zhu Z N, Tian H, Dong N N, et al. Experimental study of physico-mechanical properties of heat-treated granite by water cooling. Rock Soil Mech, 2018, 39(Suppl 2): 169

    朱振南, 田红, 董楠楠, 等. 高温花岗岩遇水冷却后物理力学特性试验研究. 岩土力学, 2018, 39(增刊2): 169
    [27] Xi B P, Wu Y C, Zhao Y S. Experimental study on the relationship between macroscopic mechanical parameters of granite and thermal shock velocity under thermal shock. Chin J Rock Mech Eng, 2019, 38(11): 2194

    郤保平, 吴阳春, 赵阳升. 热冲击作用下花岗岩宏观力学参量与热冲击速度相关规律试验研究. 岩石力学与工程学报, 2019, 38(11):2194
    [28] Shao Z L, Wang Y, Tang X H. The influences of heating and uniaxial loading on granite subjected to liquid nitrogen cooling. Eng Geol, 2020, 271: 105614 doi: 10.1016/j.enggeo.2020.105614
    [29] Du S J, Liu H, Zhi H T, et al. Testing study on mechanical properties of post-high-temperature granite. Chin J Rock Mech Eng, 2004, 23(14): 2359 doi: 10.3321/j.issn:1000-6915.2004.14.010

    杜守继, 刘华, 职洪涛, 等. 高温后花岗岩力学性能的试验研究. 岩石力学与工程学报, 2004, 23(14):2359 doi: 10.3321/j.issn:1000-6915.2004.14.010
    [30] Zhu H H, Yan Z G, Deng T, et al. Testing study on mechanical properties of tuff, granite and breccia after high temperatures. Chin J Rock Mech Eng, 2006, 25(10): 1945 doi: 10.3321/j.issn:1000-6915.2006.10.001

    朱合华, 闫治国, 邓涛, 等. 3种岩石高温后力学性质的试验研究. 岩石力学与工程学报, 2006, 25(10):1945 doi: 10.3321/j.issn:1000-6915.2006.10.001
    [31] Qiu Y P, Lin Z Y. Testing study on damage of granite samples after high temperature. Rock Soil Mech, 2006, 27(6): 1005 doi: 10.3969/j.issn.1000-7598.2006.06.032

    邱一平, 林卓英. 花岗岩样品高温后损伤的试验研究. 岩土力学, 2006, 27(6):1005 doi: 10.3969/j.issn.1000-7598.2006.06.032
    [32] Xu X L, Kang Z X, Ji M, et al. Research of microcosmic mechanism of brittle-plastic transition for granite under high temperature. Procedia Earth Planet Sci, 2009, 1(1): 432 doi: 10.1016/j.proeps.2009.09.069
    [33] Chen Y L, Ni J, Shao W, et al. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading. Int J Rock Mech Min Sci, 2012, 56: 62 doi: 10.1016/j.ijrmms.2012.07.026
    [34] Shao S S, Ranjith P G, Wasantha P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy. Geothermics, 2015, 54: 96 doi: 10.1016/j.geothermics.2014.11.005
    [35] Zhang W Q, Sun Q, Hao S Q, et al. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment. Appl Therm Eng, 2016, 98: 1297 doi: 10.1016/j.applthermaleng.2016.01.010
    [36] Yin T B, Shu R H, Li X B, et al. Comparison of mechanical properties in high temperature and thermal treatment granite. Trans Nonferrous Met Soc China, 2016, 26(7): 1926 doi: 10.1016/S1003-6326(16)64311-X
    [37] Yang S Q, Ranjith P G, Jing H W, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics, 2017, 65: 180 doi: 10.1016/j.geothermics.2016.09.008
    [38] Kumari W G P, Ranjith P G, Perera M S A, et al. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Eng Geol, 2017, 229: 31 doi: 10.1016/j.enggeo.2017.09.012
    [39] Zhao Y S, Wan Z J, Feng Z J, et al. Evolution of mechanical properties of granite at high temperature and high pressure. Geomech Geophys Geo, 2017, 3(2): 199
    [40] Isaka B, Gamage R, Rathnaweera T, et al. An influence of thermally-induced micro-cracking under cooling treatments: Mechanical characteristics of Australian granite. Energies, 2018, 11(6): 1338 doi: 10.3390/en11061338
    [41] Bieniawski Z T. Mechanism of brittle fracture of rock: Part II—experimental studies. Int J Rock Mech Min Sci Geomech Abstr, 1967, 4(4): 407 doi: 10.1016/0148-9062(67)90031-9
    [42] Hallbauer D K, Wagner H, Cook N G W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests. Int J Rock Mech Min Sci Geomech Abstr, 1973, 10(6): 713 doi: 10.1016/0148-9062(73)90015-6
    [43] Xie W H, Gao F, Li S C, et al. Study on mechanism of thermal damage fracture for limestone. Rock Soil Mech, 2007, 28(5): 1021 doi: 10.3969/j.issn.1000-7598.2007.05.032

    谢卫红, 高峰, 李顺才, 等. 石灰岩热损伤破坏机制研究. 岩土力学, 2007, 28(5):1021 doi: 10.3969/j.issn.1000-7598.2007.05.032
    [44] Jiang C X, Xie Q. Real time observation and analysis of meso fracture behavior of marble samples. J Southwest Jiaotong Univ, 1999, 34(1): 87

    姜崇喜, 谢强. 大理岩细观破坏行为的实时观察与分析. 西南交通大学学报, 1999, 34(1):87
    [45] Shang J L, Kong C J, Li T J, et al. Observation and study on meso damage and fracture of rock. J Exp Mech, 1999, 14(3): 373

    尚嘉兰, 孔常静, 李廷芥, 等. 岩石细观损伤破坏的观测研究. 实验力学, 1999, 14(3):373
    [46] Wu F T, Thomsen L. Microfracturing and deformation of westerly granite under creep condition. Int J Rock Mech Min Sci Geomech Abstr, 1975, 12(5-6): 167 doi: 10.1016/0148-9062(75)91248-6
    [47] Jiang G H. Study on the Evolution of Internal Structure and the Relationship between Wave Velocity and Permeability in Rock Subjected to High Temperature Processing [Dissertation]. Beijing: China University of Mining & Technology, Beijing, 2018

    姜广辉. 高温处理后岩石内部结构演化及波速渗透率关系研究[学位论文]. 北京: 中国矿业大学(北京), 2018
    [48] Wu X D, Liu J R, Qin J S. Effects of thermal treatment on wave velocity as well as porosity and permeability of rock. J Univ Petroleum China, 2003, 27(4): 70

    吴晓东, 刘均荣, 秦积舜. 热处理对岩石波速及孔渗的影响. 石油大学学报(自然科学版), 2003, 27(4):70
    [49] Zuo J P, Xie H P, Zhou H W, et al. Fractography of sandstone failure under temperature-tensile stress coupling effects. Chin J Rock Mech Eng, 2007, 26(12): 2444 doi: 10.3321/j.issn:1000-6915.2007.12.009

    左建平, 谢和平, 周宏伟, 等. 温度–拉应力共同作用下砂岩破坏的断口形貌. 岩石力学与工程学报, 2007, 26(12):2444 doi: 10.3321/j.issn:1000-6915.2007.12.009
    [50] Zhao Y Y, Wei K, Zhou J Q, et al. Laboratory study and micromechanical analysis of mechanical behaviors of three thermally damaged rocks. Chin J Rock Mech Eng, 2017, 36(1): 142

    赵亚永, 魏凯, 周佳庆, 等. 三类岩石热损伤力学特性的试验研究与细观力学分析. 岩石力学与工程学报, 2017, 36(1):142
    [51] Xu X L, Gao F, Shen X M, et al. Research on mechanical characteristics and micropore structure of granite under high-temperature. Rock Soil Mech, 2010, 31(6): 1752 doi: 10.3969/j.issn.1000-7598.2010.06.012

    徐小丽, 高峰, 沈晓明, 等. 高温后花岗岩力学性质及微孔隙结构特征研究. 岩土力学, 2010, 31(6):1752 doi: 10.3969/j.issn.1000-7598.2010.06.012
    [52] Zhang L Y. Research on Damage Evoultion and Fracture Mechanisms of Mudstone under High Tempearture [Dissertation]. Xuzhou: China University of Mining and Technology, 2012

    张连英. 高温作用下泥岩的损伤演化及破裂机理研究[学位论文]. 徐州: 中国矿业大学, 2012
    [53] Yang L T, Marshall A M, Wanatowski D, et al. Effect of high temperatures on sandstone—a computed tomography scan study. Int J Phys Modell Geo, 2017, 17(2): 75
    [54] Liu L Y, Ji H G, Elsworth D, et al. Dual-damage constitutive model to define thermal damage in rock. Int J Rock Mech Min Sci, 2020, 126: 104185 doi: 10.1016/j.ijrmms.2019.104185
    [55] Xu X C, Liu Q S. A preliminary study on basic mechanical properties for granite at high temperature. Chin J Geotech Eng, 2000, 22(3): 332 doi: 10.3321/j.issn:1000-4548.2000.03.014

    许锡昌, 刘泉声. 高温下花岗岩基本力学性质初步研究. 岩土工程学报, 2000, 22(3):332 doi: 10.3321/j.issn:1000-4548.2000.03.014
    [56] Liu Q S, Xu X C. Damage analysis of brittle rock at high temperature. Chin J Rock Mech Eng, 2000, 19(4): 408 doi: 10.3321/j.issn:1000-6915.2000.04.002

    刘泉声, 许锡昌. 温度作用下脆性岩石的损伤分析. 岩石力学与工程学报, 2000, 19(4):408 doi: 10.3321/j.issn:1000-6915.2000.04.002
    [57] Yao M D. Experimental Study on Mechanical Properties and Crack Propagation of Thermal Damaged Rock [Dissertation]. Wuhan: Wuhan University, 2017

    姚孟迪. 热损伤岩石力学特性及裂纹扩展试验研究[学位论文]. 武汉: 武汉大学, 2017
    [58] Zhu Y G, Liu Q S, Kang Y S, et al. Study of creep damage constitutive relationship of granite considering thermal effect. Chin J Rock Mech Eng, 2011, 30(9): 1882

    朱元广, 刘泉声, 康永水, 等. 考虑温度效应的花岗岩蠕变损伤本构关系研究. 岩石力学与工程学报, 2011, 30(9):1882
    [59] Tang S B, Tang C A, Zhu W C, et al. Numerical investigation on rock failure process induced by thermal stress. Chin J Rock Mech Eng, 2006, 25(10): 2071 doi: 10.3321/j.issn:1000-6915.2006.10.019

    唐世斌, 唐春安, 朱万成, 等. 热应力作用下的岩石破裂过程分析. 岩石力学与工程学报, 2006, 25(10):2071 doi: 10.3321/j.issn:1000-6915.2006.10.019
    [60] Xie W H, Li S C, Gao F. Energy fracture criterion of thermal damage-mechanical coupling. J Xian Univ Sci Technol, 2007, 27(3): 341 doi: 10.3969/j.issn.1672-9315.2007.03.002

    谢卫红, 李顺才, 高峰. 岩石热损伤-力耦合能量破坏准则研究. 西安科技大学学报, 2007, 27(3):341 doi: 10.3969/j.issn.1672-9315.2007.03.002
    [61] Xu X L. Research on the Mechanical Characteristics and Micromechanism of Granite under Temperature Loads [Dissertation]. Xuzhou: China University of Mining and Technology, 2008

    徐小丽. 温度载荷作用下花岗岩力学性质演化及其微观机制研究[学位论文]. 徐州: 中国矿业大学, 2008
    [62] Zhang Z Z, Gao F, Xu X L. Experimental study of temperature effect of mechanical properties of granite. Rock Soil Mech, 2011, 32(8): 2346 doi: 10.3969/j.issn.1000-7598.2011.08.017

    张志镇, 高峰, 徐小丽. 花岗岩力学特性的温度效应试验研究. 岩土力学, 2011, 32(8):2346 doi: 10.3969/j.issn.1000-7598.2011.08.017
    [63] Gao M B. Hard Rock Constitutive Model and Its Preliminary Application under the Thermal-Mechanical Action [Dissertation]. Chengdu: Chengdu University of Technology, 2014

    高美奔. 热-力作用下硬岩本构模型及其初步运用研究[学位论文]. 成都: 成都理工大学, 2014
    [64] Li H G, Zhu D Y, Yao H Y, et al. Experimental study on fracture and strength characteristics of marble after heating. J Sichuan Univ (Eng Sci Ed), 2015, 47(Suppl 1): 53

    李宏国, 朱大勇, 姚华彦, 等. 温度作用后大理岩破裂及强度特性试验研究. 四川大学学报(工程科学版), 2015, 47(增刊1): 53
    [65] Li T B, Gao M B, Chen G Q, et al. A thermal-mechanical-damage constitutive model for hard brittle rocks and its preliminary application. Chin J Geotech Eng, 2017, 39(8): 1477 doi: 10.11779/CJGE201708015

    李天斌, 高美奔, 陈国庆, 等. 硬脆性岩石热-力-损伤本构模型及其初步运用. 岩土工程学报, 2017, 39(8):1477 doi: 10.11779/CJGE201708015
    [66] Wang Z Y, Wang S J, Yang Z F. Manifold method in analysis of large deformation for rock. Chin J Rock Mech Eng, 1997, 16(5): 399 doi: 10.3321/j.issn:1000-6915.1997.05.001

    王芝银, 王思敬, 杨志法. 岩石大变形分析的流形方法. 岩石力学与工程学报, 1997, 16(5):399 doi: 10.3321/j.issn:1000-6915.1997.05.001
    [67] Yang T H, Li L C, Zhu W C, et al. Study of fracture propagation in fractured rocks under the effects of coupled thermal-hydrologic-mechanical(THM) using digital image technology processing//The 9th National Symposium on rock mechanics and engineering. Shenyang, 2006: 335

    杨天鸿, 李连崇, 朱万成, 等. 基于数字图像技术岩石温度渗流应力耦合破坏机制的数值模拟初探//第九届全国岩石力学与工程学术大会. 沈阳, 2006: 335
    [68] Tang S B, Tang C A, Liang Z Z, et al. Failure process analysis of ceramic materials subjected to thermal shock. Acta Mater Compos Sin, 2008, 25(2): 115 doi: 10.3321/j.issn:1000-3851.2008.02.020

    唐世斌, 唐春安, 梁正召, 等. 热冲击作用下的陶瓷材料破裂过程数值分析. 复合材料学报, 2008, 25(2):115 doi: 10.3321/j.issn:1000-3851.2008.02.020
    [69] Tang S B, Zhang H, Tang C A, et al. Numerical model for the cracking behavior of heterogeneous brittle solids subjected to thermal shock. Int J Solids Struct, 2016, 80: 520 doi: 10.1016/j.ijsolstr.2015.10.012
    [70] Zhang F. Physical and Mechanical Properties of High-Temperature Rocks after Different Cooling Treatments [Dissertation]. Dalian: Dalian University of Technology, 2020

    张帆. 冷冲击下高温岩石物理力学特性研究[学位论文]. 大连: 大连理工大学, 2020
    [71] Xiong G M, Xi B P, Wu Y C, et al. Numerical study on distribution of temperature field of dry hot rock under hot shock. J Taiyuan Univ Technol, 2018, 49(6): 820

    熊贵明, 郤保平, 吴阳春, 等. 热冲击作用下花岗岩温度场分布规律数值模拟研究. 太原理工大学学报, 2018, 49(6):820
    [72] Yang Z, Yang S Q, Chen M. Peridynamic simulation on fracture mechanical behavior of granite containing a single fissure after thermal cycling treatment. Comput Geotech, 2020, 120: 103414 doi: 10.1016/j.compgeo.2019.103414
    [73] Li X. Particle Mechanics Modeling of Thermal Effects on Shear Behavior of Granitic Fracture Rocks in Beishan, Gansu Province [Dissertation]. Beijing: China University of Geosciences, 2017

    李雪. 温度和应力条件下北山裂隙性花岗质岩石抗剪机理实验与数值模拟研究[学位论文]. 北京: 中国地质大学(北京), 2017
    [74] Li W S. Study on Water-Cooling Cracking Modes and Hydraulic Fracture Propagation Law of High-Temperature Granite [Dissertation]. Jinan: Shandong University, 2020

    李玮枢. 高温花岗岩水冷破裂模式与水压裂缝扩展规律研究[学位论文]. 济南: 山东大学, 2020
    [75] Xu Z Y, Li T B, Chen G Q, et al. The grain-based model numerical simulation of unconfined compressive strength experiment under thermal-mechanical coupling effect. KSCE J Civ Eng, 2018, 22(8): 2764 doi: 10.1007/s12205-017-1228-z
    [76] Zhao Z H. Thermal influence on mechanical properties of granite: A microcracking perspective. Rock Mech Rock Eng, 2016, 49(3): 747 doi: 10.1007/s00603-015-0767-1
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  22
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-23
  • 网络出版日期:  2021-03-27

目录

    /

    返回文章
    返回