• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于文献计量解析VOCs催化氧化的发展趋势

邢奕 张晖 苏伟 张文伯 马志亮 王嘉庆 张洪硕

邢奕, 张晖, 苏伟, 张文伯, 马志亮, 王嘉庆, 张洪硕. 基于文献计量解析VOCs催化氧化的发展趋势[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.12.30.003
引用本文: 邢奕, 张晖, 苏伟, 张文伯, 马志亮, 王嘉庆, 张洪硕. 基于文献计量解析VOCs催化氧化的发展趋势[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.12.30.003
XING Yi, ZHANG Hui, SU Wei, ZHANG Wen-bo, MA Zhi-liang, WANG Jia-qing, ZHANG Hong-shuo. Bibliometric analysis of the development tendency of VOCs catalytic oxidation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.12.30.003
Citation: XING Yi, ZHANG Hui, SU Wei, ZHANG Wen-bo, MA Zhi-liang, WANG Jia-qing, ZHANG Hong-shuo. Bibliometric analysis of the development tendency of VOCs catalytic oxidation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.12.30.003

基于文献计量解析VOCs催化氧化的发展趋势

doi: 10.13374/j.issn2095-9389.2020.12.30.003
基金项目: 国家重点研发计划资助项目(2017YFC0210300); 国家自然科学基金资助项目(51770438);北京科技计划资助项目(Z191100009119008); 固废资源化利用与节能建材国家重点实验室开放基金资助项目(SWR-2019-002)
详细信息
    通讯作者:

    E-mail: suwei@ustb.edu.cn

  • 中图分类号: X757

Bibliometric analysis of the development tendency of VOCs catalytic oxidation

More Information
  • 摘要: 以VOCs的催化氧化为主题,利用Web of Science数据库对4654篇论文进行了数据处理,并通过文献计量学的方法分析了该主题的发展趋势与研究现状。结果表明,近25年期间,VOCs催化氧化相关课题的研究底蕴丰富,发展前景良好,年度发文数量呈指数型增长趋势。中国是世界上发表VOCs催化氧化为主题的论文最多的国家,占研究总量的34%;研究最深的机构和期刊分别是中国科学院大学(6.66%)和Applied Catalysis B-Environmental(11.68%);Chemistry和Engineering是最受欢迎的科目。此外,对近年来的研究热词分析表明,应用于VOCs催化氧化的催化剂中,最热门的元素是Mn,实验中最常见的VOCs类底物是甲苯。总结了常见的催化剂物质和VOCs底物,这反映了目前的主要研究方向,也为今后的研究提供了指导。

     

  • 图  1  近25年来与VOCs催化氧化相关的SCI论文数量

    Figure  1.  Number of SCI-indexed publications on VOCs catalytic oxidation over the past 25 years

    图  2  不同国家发表的与VOCs催化氧化相关的SCI论文数量

    Figure  2.  Number of SCI-indexed publications on VOCs catalytic oxidation in different countries

    图  3  2006~2020年间排行前5学科领域年度发表与VOCs催化氧化相关的论文数量

    Figure  3.  The annual number SCI-indexed publications on VOCs catalytic oxidation of each top 5 productive subject during 2006–2020

    图  4  出版物中催化剂的使用频率

    Figure  4.  Catalyst usage frequency in publications

    图  5  出版物中VOCs的使用频次

    Figure  5.  VOCs usage frequency in publications

    表  1  1996~2020年十大高产科研机构

    Table  1.   Top 10 productive research institutions from 1996 to 2020

    RankInstitutionNTIR (TI/%)R (SI/%)R (CI/%)R (FI/%)R (RI/%)
    1Chinese Acad Sci, China3431 (6.66)5 (1.67)1 (7.59)1 (4.35)1 (5.15)
    2Zhejiang Univ, China852 (1.65)1 (3.24)2 (1.08)2 (2.24)2 (3.17)
    3Beijing Univ Technol, China583 (1.13)2 (2.46)8 (0.60)3 (1.44)3 (1.84)
    4Tsinghua Univ, China464 (0.89)6 (1.47)4 (0.69)7 (0.86)4 (1.27)
    5Sun Yat Sen Univ, China425 (0.82)12 (1.08)4 (0.69)4 (1.04)8 (0.99)
    6Dalian Univ Technol, China416 (0.80)13 (0.88)4 (0.69)5 (0.98)5 (1.16)
    7Shanghai Jiao Tong Univ, China377 (0.72)10 (1.18)8 (0.60)6 (0.89)11 (0.91)
    8Xi An Jiao Tong Univ, China338 (0.64)22 (0.59)7 (0.65)11 (0.67)16 (0.65)
    9Zhejiang Univ Technol, China338 (0.64)4 (1.77)24 (0.36)8 (0.83)9 (0.96)
    10CSIC, Spain3210 (0.62)3 (1.87)37 (0.31)9 (0.80)13 (0.79)
    Notes: NTI, number of total publications in a certain institution; R (TI), rank and the percentage of total publications; R (SI), rank and the percentage of single institution's publications; R (CI), rank and the percentage of internationally collaborative institutions' publications; R (FI), rank and the percentage of first-author institutions' publications; R (RI), rank and the percentage of reprint author institutions' publications.
    下载: 导出CSV

    表  2  1996~2020年的十大高产期刊

    Table  2.   Top 10 productive journals from 1996 to 2020

    RankJournalNTJTJ/%NTCCCPIFH-index
    1Applied Catalysis B-Environmental41511.682452559.1016.683205
    2Chemical Engineering Journal1995.60458923.0610.652172
    3Applied Catalysis A-General1253.52468037.445.006192
    4Journal of Hazardous Materials1213.40412234.079.038235
    5Catalysis Communications772.17196425.513.612105
    6Industrial & Engineering Chemistry Research762.1494312.413.573197
    7Applied Surface Science581.6372612.526.182159
    8Environmental Science & Technology571.60345860.677.864345
    9Rsc Advances561.5861110.913.119113
    10Chemosphere551.55166830.335.778212
    Notes: NTJ, number of total publications in a certain journal; TJ, the percentage of total publications; NTC, number of total citations; CPP, citations per publication; IF, impact factor in 2019; H-index refers to his or her having at most h papers cited at least h times.
    下载: 导出CSV
  • [1] Wang S B, Ang H M, Tade M O. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environ Int, 2007, 33(5): 694 doi: 10.1016/j.envint.2007.02.011
    [2] Ousmane M, Liotta L F, Carlo G D, et al. Supported Au catalysts for low-temperature abatement of propene and toluene, as model VOCs: Support effect. Appl Catal B:Environ, 2011, 101(3-4): 629 doi: 10.1016/j.apcatb.2010.11.004
    [3] Dudareva N, Negre F, Nagegowda D A, et al. Plant volatiles: Recent advances and future perspectives. Crit Rev Plant Sci, 2006, 25(5): 417 doi: 10.1080/07352680600899973
    [4] Tassi F, Venturi S, Cabassi J, et al. Volatile organic compounds (VOCs) in soil gases from Solfatara crater (Campi Flegrei, southern Italy): Geogenic source(s) vs. biogeochemical processes. Appl Geochem, 2015, 56: 37 doi: 10.1016/j.apgeochem.2015.02.005
    [5] Tassi F, Capecchiacci F, Buccianti A, et al. Sampling and analytical procedures for the determination of VOCs released into air from natural and anthropogenic sources: A comparison between SPME (Solid Phase Micro Extraction) and ST (Solid Trap) methods. Appl Geochem, 2012, 27(1): 115 doi: 10.1016/j.apgeochem.2011.09.023
    [6] Montero-Montoya R, López-Vargas R, Arellano-Aguilar O. Volatile organic compounds in air: Sources, distribution, exposure and associated illnesses in children. Ann Glob Health, 2018, 84(2): 225 doi: 10.29024/aogh.910
    [7] Hui L R, Liu X G, Tan Q W, et al. VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmos Environ, 2020, 224: 117340 doi: 10.1016/j.atmosenv.2020.117340
    [8] Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl Catal B:Environ, 1997, 14(1-2): 55 doi: 10.1016/S0926-3373(97)00012-X
    [9] Zhang L, Peng Y X, Zhang J, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials. Chin J Catal, 2016, 37(6): 800 doi: 10.1016/S1872-2067(15)61073-7
    [10] Amann M, Lutz M. The revision of the air quality legislation in the European Union related to ground-level ozone. J Hazard Mater, 2000, 78(1-3): 41 doi: 10.1016/S0304-3894(00)00216-8
    [11] Li W B, Wang J X, Gong H. Catalytic combustion of VOCs on non-noble metal catalysts. Catal Today, 2009, 148(1-2): 81 doi: 10.1016/j.cattod.2009.03.007
    [12] Belpomme D, Irigaray P, Hardell L, et al. The multitude and diversity of environmental carcinogens. Environ Res, 2007, 105(3): 414 doi: 10.1016/j.envres.2007.07.002
    [13] Atkinson R. Atmospheric chemistry of VOCs and NOx. Atmos Environ, 2000, 34(12-14): 2063 doi: 10.1016/S1352-2310(99)00460-4
    [14] Zang M, Zhao C C, Wang Y Q, et al. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts. J Saudi Chem Soc, 2019, 23(6): 645 doi: 10.1016/j.jscs.2019.01.004
    [15] Li N, Zhang X L, Shi M J, et al. Does China's air pollution abatement policy matter? An assessment of the Beijing-Tianjin-Hebei region based on a multi-regional CGE model. Energy Policy, 2019, 127: 213 doi: 10.1016/j.enpol.2018.12.019
    [16] Li G W, Fan Q J, Liu Q, et al. The control technique over the pollution caused by VOCs. J Xian Univ Archit &technology, 1998, 30(4): 399

    李国文, 樊青娟, 刘强, 等. 挥发性有机废气(VOCs)的污染控制技术. 西安建筑科技大学学报(自然科学版), 1998, 30(4):399
    [17] Yang L X. Study on Temporal-Spatial Characteristic and Control Strategy of Industrial Emissions of Volatile Organic Compounds in China [Dissertation]. Guangzhou: South China University of Technology, 2012

    杨利娴. 我国工业源VOCs排放时空分布特征与控制策略研究[学位论文]. 广州: 华南理工大学, 2012
    [18] Liotta L F. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl Catal B:Environ, 2010, 100(3-4): 403 doi: 10.1016/j.apcatb.2010.08.023
    [19] Zhang S H, You J P, Kennes C, et al. Current advances of VOCs degradation by bioelectrochemical systems: A review. Chem Eng J, 2018, 334: 2625 doi: 10.1016/j.cej.2017.11.014
    [20] Simayi M, Hao Y F, Li J, et al. Establishment of county-level emission inventory for industrial NMVOCs in China and spatial-temporal characteristics for 2010—2016. Atmos Environ, 2019, 211: 194 doi: 10.1016/j.atmosenv.2019.04.064
    [21] Li J, Zhou Y, Simayi M, et al. Spatial-temporal variations and reduction potentials of volatile organic compound emissions from the coking industry in China. J Clean Prod, 2019, 214: 224 doi: 10.1016/j.jclepro.2018.12.308
    [22] Zhu L L, Shen D K, Luo K H. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods. J Hazard Mater, 2020, 389: 122102 doi: 10.1016/j.jhazmat.2020.122102
    [23] Kołodziej A, Łojewska J. Optimization of structured catalyst carriers for VOC combustion. Catal Today, 2005, 105(3-4): 378 doi: 10.1016/j.cattod.2005.06.029
    [24] Kamal M S, Razzak S A, Hossain M M. Catalytic oxidation of volatile organic compounds (VOCs) — A review. Atmos Environ, 2016, 140: 117 doi: 10.1016/j.atmosenv.2016.05.031
    [25] Li M Z, Huang Z H, Kang F Y. Progress of volatile organic compounds control technology. Chem Ind Eng, 2015, 32(3): 2

    李明哲, 黄正宏, 康飞宇. 挥发性有机物的控制技术进展. 化学工业与工程, 2015, 32(3):2
    [26] Zou W X, Gao B, Ok Y S, et al. Integrated adsorption and photocatalytic degradation of volatile organic compounds (VOCs) using carbon-based nanocomposites: A critical review. Chemosphere, 2019, 218: 845 doi: 10.1016/j.chemosphere.2018.11.175
    [27] Glänzel W. Bibliometrics as a research field: A course on theory and application of bibliometric indicators [R/OL]. Researchgate (2003)[2020-1230].https://www.researchgate.net/publication/242406991_Bibliometrics_as_a_research_field_A_course_on_theory_and_application_of_bibliometric_indicators
    [28] Hirsch J E. An index to quantify an individual's scientific research output. PNAS, 2005, 102(46): 16569 doi: 10.1073/pnas.0507655102
    [29] Xing Y, Guo Z F, Su W, et al. A review of the hot spot analysis and the research status of single-atom catalysis based on the bibliometric analysis. New J Chem, 2021, 45: 4253 doi: 10.1039/D0NJ05673A
    [30] Xing Y, Ma Z L, Su W, et al. Analysis of research status of CO2 conversion technology based on bibliometrics. Catalysts, 2020, 10(4): 370 doi: 10.3390/catal10040370
    [31] Liebscher H. Economic solutions for compliance to the new European VOC Directive. Prog Org Coat, 2000, 40(1-4): 75 doi: 10.1016/S0300-9440(00)00139-9
    [32] Yang Y M, Cui J S, Tong L, et al. Evolution of the definition of volatile organic compounds in the United States and its implications for China. Res Environ Sci, 2017, 30(3): 368

    杨一鸣, 崔积山, 童莉, 等. 美国VOCs定义演变历程对我国VOCs环境管控的启示. 环境科学研究, 2017, 30(3):368
    [33] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1

    邢奕, 张文伯, 苏伟, 等. 中国钢铁行业超低排放之路. 工程科学学报, 2021, 43(1):1
    [34] Garfield E. The history and meaning of the journal impact factor. JAMA, 2006, 295(1): 90 doi: 10.1001/jama.295.1.90
    [35] Wang Z H, Zhao Y D, Wang B. A bibliometric analysis of climate change adaptation based on massive research literature data. J Clean Prod, 2018, 199: 1072 doi: 10.1016/j.jclepro.2018.06.183
    [36] Castaño M H, Molina R, Moreno S. Catalytic oxidation of VOCs on MnMgAlOx mixed oxides obtained by auto-combustion. J Mol Catal A:Chem, 2015, 398: 358 doi: 10.1016/j.molcata.2015.01.001
    [37] Xu Z, Chen J, Cai S C, et al. Biphasic Ag block assisting electron and energy transfer to facilitate photothermal catalytic oxidation of HCHO over manganese oxide. Mater Today Energy, 2019, 14: 100343 doi: 10.1016/j.mtener.2019.100343
    [38] Wang J G, Zhang C, Yang S F, et al. Highly improved acetone oxidation activity over mesoporous hollow nanospherical MnxCo3−xO4 solid solutions. Catal Sci Technol, 2019, 9(22): 6379 doi: 10.1039/C9CY01791G
    [39] Hoseini S, Rahemi N, Allahyari S, et al. Application of plasma technology in the removal of volatile organic compounds (BTX) using manganese oxide nano-catalysts synthesized from spent batteries. J Clean Prod, 2019, 232: 1134 doi: 10.1016/j.jclepro.2019.05.227
    [40] Tian M J, Guo X, Dong R, et al. Insight into the boosted catalytic performance and chlorine resistance of nanosphere-like meso-macroporous CrOx/MnCo3Ox for 1, 2-dichloroethane destruction. Appl Catal B:Environ, 2019, 259: 118018 doi: 10.1016/j.apcatb.2019.118018
    [41] Veerapandian S K P, Ye Z P, Giraudon J M, et al. Plasma assisted Cu-Mn mixed oxide catalysts for trichloroethylene abatement in moist air. J Hazard Mater, 2019, 379: 120781 doi: 10.1016/j.jhazmat.2019.120781
    [42] Einaga H, Yamamoto S, Maeda N, et al. Structural analysis of manganese oxides supported on SiO2 for benzene oxidation with ozone. Catal Today, 2015, 242: 287 doi: 10.1016/j.cattod.2014.05.018
    [43] Wang Y X, Aghamohammadi S, Li D Y, et al. Structure dependence of Nb2O5-X supported manganese oxide for catalytic oxidation of propane: Enhanced oxidation activity for MnOx on a low surface area Nb2O5-X. Appl Catal B:Environ, 2019, 244: 438 doi: 10.1016/j.apcatb.2018.11.066
    [44] Joung H J, Kim J H, Oh J S, et al. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles. Appl Surf Sci, 2014, 290: 267 doi: 10.1016/j.apsusc.2013.11.066
    [45] Wu J C S, Chang T Y. VOC deep oxidation over Pt catalysts using hydrophobic supports. Catal Today, 1998, 44(1-4): 111 doi: 10.1016/S0920-5861(98)00179-5
    [46] Wu J C S, Lin Z A, Tsai F M, et al. Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts. Catal Today, 2000, 63(2-4): 419 doi: 10.1016/S0920-5861(00)00487-9
    [47] Lin F W, Xiang L, Zhang Z M, et al. Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions. Crit Rev Environ Sci Technol, 2020: 1
    [48] El Assal Z, Ojala S, Pitkäaho S, et al. Comparative study on the support properties in the total oxidation of dichloromethane over Pt catalysts. Chem Eng J, 2017, 313: 1010 doi: 10.1016/j.cej.2016.10.139
    [49] Rao Z P, Shi G S, Wang Z, et al. Photocatalytic degradation of gaseous VOCs over Tm3+-TiO2: Revealing the activity enhancement mechanism and different reaction paths. Chem Eng J, 2020, 395: 125078 doi: 10.1016/j.cej.2020.125078
    [50] Li J W, Zhao P, Liu S T. SnOx-MnOx-TiO2 catalysts with high resistance to chlorine poisoning for low-temperature chlorobenzene oxidation. Appl Catal A:Gen, 2014, 482: 363 doi: 10.1016/j.apcata.2014.06.013
    [51] Busca G, Daturi M, Finocchio E, et al. Transition metal mixed oxides as combustion catalysts: Preparation, characterization and activity mechanisms. Catal Today, 1997, 33(1-3): 239 doi: 10.1016/S0920-5861(96)00112-5
    [52] Dissanayake S, Wasalathanthri N, Shirazi Amin A, et al. Mesoporous Co3O4 catalysts for VOC elimination: Oxidation of 2-propanol. Appl Catal A:Gen, 2020, 590: 117366 doi: 10.1016/j.apcata.2019.117366
    [53] Łojewska J, Kołodziej A, Łojewski T, et al. Cobalt catalyst deposited on metallic microstructures for VOC combustion: Preparation by non-equilibrium plasma. Catal Commun, 2008, 10(2): 142 doi: 10.1016/j.catcom.2008.07.042
    [54] Li Y, Shen W. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem Soc Rev, 2014, 43(5): 1543 doi: 10.1039/C3CS60296F
    [55] Skårman B, Grandjean D, Benfield R E, et al. Carbon monoxide oxidation on nanostructured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS, and high-energy diffraction. J Catal, 2002, 211(1): 119
    [56] Zimmer P, Tschöpe A, Birringer R. Temperature-programmed reaction spectroscopy of ceria- and Cu/ceria-supported oxide catalyst. J Catal, 2002, 205(2): 339 doi: 10.1006/jcat.2001.3461
    [57] Li H F, Lu G Z, Dai Q G, et al. Hierarchical organization and catalytic activity of high-surface-area mesoporous ceria microspheres prepared via hydrothermal routes. ACS Appl Mater Interfaces, 2010, 2(3): 838 doi: 10.1021/am900829y
    [58] Wang Q Y, Yeung K L, Bañares M A. Ceria and its related materials for VOC catalytic combustion: A review. Catal Today, 2020, 356: 141 doi: 10.1016/j.cattod.2019.05.016
    [59] Rezayati S, Ramazani A. A review on electrophilic thiocyanation of aromatic and heteroaromatic compounds. Tetrahedron, 2020, 76(36): 131382 doi: 10.1016/j.tet.2020.131382
    [60] Lin L L, Cheng Y, Cao L M, et al. The characterization and source apportionment of VOCs in Shenzhen during ozone polluted period. China Environ Sci, 2021, 41(8): 3484 doi: 10.3969/j.issn.1000-6923.2021.08.002

    林理量, 程勇, 曹礼明, 等. 深圳臭氧污染日的VOCs组成与来源特征. 中国环境科学, 2021, 41(8):3484 doi: 10.3969/j.issn.1000-6923.2021.08.002
    [61] Dai C H, Zhou Y Y, Peng H, et al. Current progress in remediation of chlorinated volatile organic compounds: A review. J Ind Eng Chem, 2018, 62: 106 doi: 10.1016/j.jiec.2017.12.049
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  84
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 网络出版日期:  2021-03-27

目录

    /

    返回文章
    返回