• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

真空条件下钢液脱气过程的模拟研究

张国磊 成国光 代卫星 张旭 姜新岩

张国磊, 成国光, 代卫星, 张旭, 姜新岩. 真空条件下钢液脱气过程的模拟研究[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.01.01.002
引用本文: 张国磊, 成国光, 代卫星, 张旭, 姜新岩. 真空条件下钢液脱气过程的模拟研究[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.01.01.002
ZHANG Guo-lei, CHENG Guo-guang, DAI Wei-xing, ZHANG Xu, JIANG Xin-yan. Simulation research on the degassing process of molten steel in a vacuum[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.01.01.002
Citation: ZHANG Guo-lei, CHENG Guo-guang, DAI Wei-xing, ZHANG Xu, JIANG Xin-yan. Simulation research on the degassing process of molten steel in a vacuum[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.01.01.002

真空条件下钢液脱气过程的模拟研究

doi: 10.13374/j.issn2095-9389.2021.01.01.002
基金项目: 国家自然科学基金资助项目(51674024, 51874034)
详细信息
    通讯作者:

    E-mail: chengguoguang@metall.ustb.edu.cn

  • 中图分类号: TF135

Simulation research on the degassing process of molten steel in a vacuum

More Information
  • 摘要: 基于相似的动力学机理,利用水溶液中溶解氧的去除过程模拟了钢液的真空脱气行为. 在负压25 kPa条件下发现,容器壁面或测氧探头表面会析出大量细小气泡,这一现象与以往脱气数学模型假设的内部脱气反应非常类似;为了验证内部脱气位点的存在,通过引入机械搅拌,对溶池表面和内部脱气速率进行了分析计算. 实验结果表明,在整个脱气过程中溶池表面脱气速率很低,内部脱气位点析出的气泡会极大地提高溶解氧的去除速率,尤其当真空压力为25 kPa时,其脱气速率约为自由表面的脱气速率的10倍,但内部反应仅局限于脱气的初始阶段,即高溶解氧浓度范围内. 另外,水溶液中溶解氧的去除为一级反应过程,其体积传质系数(k · A · V−1)为常数,因此可以利用溶解氧在水溶液中的去除过程模拟钢液的真空脱气行为. 为了描述真空压力和吹氩流量对k · A · V−1的影响,引入搅拌动能密度(ε)的概念,通过线性回归得到了lg (k · A · V−1)与lg ε之间的函数关系,并与以往的模拟研究进行了对比.

     

  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of experimental apparatus

    图  2  负压下溶解氧随时间的变化

    Figure  2.  Variation of dissolved oxygen concentration with time under vacuum pressure

    图  3  不同压力下溶氧仪探头表面气泡的析出过程. (a) Pv=101 kPa; (b) Pv=75 kPa; (c) Pv=50 kPa; (d) Pv=25 kPa

    Figure  3.  Bubble precipitation process from the surface of DO probe with different vacuum pressures: (a) Pv = 101 kPa; (b) Pv = 75 kPa; (c) Pv = 50 kPa; (d) Pv = 25 kPa

    图  4  相同转速下真空压力对溶解氧的影响

    Figure  4.  Effect of vacuum pressure on dissolved oxygen concentration at a constant rotating speed

    图  5  真空压力对溶池表面和内部脱气平均脱气速率的影响

    Figure  5.  Effect of vacuum pressure on the average degassing rate at the bath surface and inner site

    图  6  真空压力对溶解氧浓度的影响

    Figure  6.  Effect of vacuum pressure on dissolved oxygen concentration

    图  7  真空压力下相对溶解氧浓度随时间的变化

    Figure  7.  Variations of relative dissolved oxygen concentration with time under vacuum pressure

    图  8  不同负压下吹氩流量与体积传质系数的函数关系

    Figure  8.  Relationship between argon flow rate and volumetric mass transfer coefficient under reduced pressure

    图  9  搅拌动能密度对体积传质系数的影响

    Figure  9.  Effect of stirring power density on the volumetric mass transfer coefficient

    图  10  真空精炼脱氢过程中数学模型预测的体积传质系数

    Figure  10.  Prediction of volumetric mass transfer coefficient using mathematical models in vacuum refining process

  • [1] Zhu B H. Study on the Gas-Liquid Two Phase Flow and Dehydrogenation Behavior in RH Vacuum Refining Process [Dissertation]. Chongqing: Chongqing University, 2017

    朱博洪. RH真空精炼过程的气液两相流动及脱氢行为研究[学位论文]. 重庆: 重庆大学, 2017
    [2] Karouni F, Wynne B P, Talamantes-Silva J, et al. Hydrogen degassing in a vacuum arc degasser using a three-phase eulerian method and discrete population balance model. Steel Res Int, 2018, 89(5): 1700550 doi: 10.1002/srin.201700550
    [3] Yu S, Miettinen J, Louhenkilpi S. Modeling study of nitrogen removal from the vacuum tank degasser. Steel Res Int, 2014, 85(9): 1393 doi: 10.1002/srin.201300262
    [4] Kleimt B, Köhle S, Johann K P, et al. Dynamic process model for denitrogenation and dehydrogenation by vacuum degassing. Scand J Metall, 2000, 29(5): 194 doi: 10.1034/j.1600-0692.2000.d01-23.x
    [5] Steneholm K, Andersson M, Tilliander A, et al. Removal of hydrogen, nitrogen and sulphur from tool steel during vacuum degassing. Ironmak Steelmak, 2013, 40(3): 199 doi: 10.1179/1743281212Y.0000000029
    [6] Ende M A, Kim Y M, Cho M K, et al. A kinetic model for the ruhrstahl heraeus (RH) degassing process. Metall Mater Trans B, 2011, 42(3): 477 doi: 10.1007/s11663-011-9495-4
    [7] Takahashi M, Matsumoto H, Saito T. Mechanism of decarburization in RH degasser. ISIJ Int, 1995, 35(12): 1452 doi: 10.2355/isijinternational.35.1452
    [8] You Z M, Cheng G G, Wang X C, et al. Mathematical model for decarburization of ultra-low carbon steel in single snorkel refining furnace. Metall Mater Trans B, 2015, 46(1): 459 doi: 10.1007/s11663-014-0182-0
    [9] Huang Y, Cheng G G, Wang Q M, et al. Mathematical model for decarburization of ultralow carbon steel during RH treatment. Ironmak Steelmak, 2020, 47(6): 655 doi: 10.1080/03019233.2019.1567999
    [10] Zhang G L, Cheng G G, Dai W X, et al. Study on dehydrogenation behaviour of molten steel in single snorkel refining furnace (SSRF) by a mathematical model. Ironmak Steelmak, 2020, 48(8): 909
    [11] Geng D Q, Lei H, Liu A H, et al. Physical simulation for mixing and mass transfer characteristics during RH vacuum refining process // The 9thVacuum Metallurgy and Surface Engineering Conference. Shenyang, 2009: 164
    [12] Kitamura S Y, Miyamoto K I, Tsujino R. The evaluation of gas-liquid reaction rate at bath surface by the gas adsorption and desorption tests. Tetsu-to-Hagane, 1994, 80(2): 101 doi: 10.2355/tetsutohagane1955.80.2_101
    [13] Maruoka N, Lazuardi F, Nogami H, et al. Effect of bottom bubbling conditions on surface reaction rate in oxygen–water system. ISIJ Int, 2010, 50(1): 89 doi: 10.2355/isijinternational.50.89
    [14] Maruoka N, Lazuardi F, Maeyama T, et al. Evaluation of bubble eye area to improve gas/liquid reaction rates at bath surfaces. ISIJ Int, 2011, 51(2): 236 doi: 10.2355/isijinternational.51.236
    [15] Guo D, Irons G A. Modeling of gas-liquid reactions in ladle metallurgy: Part I. Physical modeling. Metall Mater Trans B, 2000, 31(6): 1447 doi: 10.1007/s11663-000-0029-8
    [16] Guo D, Irons G A. Modeling of gas-liquid reactions in ladle metallurgy: Part II. Numerical simulation. Metall Mater Trans B, 2000, 31(6): 1457 doi: 10.1007/s11663-000-0030-2
    [17] Kim Y T, Yi K W. Effects of the ultrasound treatment on reaction rates in the RH processor water model system. Met Mater Int, 2019, 25(1): 238 doi: 10.1007/s12540-018-0160-1
    [18] Schneider S, Xie Y K, Oeters F. Mass transfer of dissolved gas from a liquid into a rising bubble swarm. Steel Res, 1991, 62(7): 296 doi: 10.1002/srin.199101299
    [19] Brennen C E. Cavitation and Bubble Dynamics. Cambridge: Cambridge University Press, 2014
    [20] Yu H M. Refining Technology of Molten Steel in Electric Furnace. Beijing: Metallurgical Industry Press, 2010

    俞海明. 电炉钢水的炉外精炼技术. 北京: 冶金工业出版社, 2010
    [21] Li J H. On mass transfer of oxygen in water. Guangdong Chem Ind, 2014, 41(3): 69 doi: 10.3969/j.issn.1007-1865.2014.03.034

    李军宏. 氧在水中传质过程的探讨. 广东化工, 2014, 41(3):69 doi: 10.3969/j.issn.1007-1865.2014.03.034
    [22] Lü Y Q, Zheng S L, Wang S N, et al. Structure and diffusivity of oxygen in concentrated alkali-metal hydroxide solutions: A molecular dynamics simulation study. Acta Phys Chimica Sin, 2015, 31(6): 1045 doi: 10.3866/PKU.WHXB201504071
    [23] Higuchi Y, Shirota Y. Effect of stirring condition and bath shape on degassing behavior in water model. Tetsu-to-Hagane, 2000, 86(11): 748 doi: 10.2355/tetsutohagane1955.86.11_748
    [24] Sakaguchi K, Ito K. Measurement of the volumetric mass transfer coefficient of gas-stirred vessel under reduced pressure. ISIJ Int, 1995, 35(11): 1348 doi: 10.2355/isijinternational.35.1348
    [25] Sano M, Mori K. Circulating flow and mixing time in a molten metal bath with inert gas injection. Tetsu-to-Hagane, 1982, 68(16): 2451 doi: 10.2355/tetsutohagane1955.68.16_2451
    [26] Karouni F, Wynne B P, Talamantes-Silva J, et al. A parametric study on the effects of process conditions on dehydrogenation, wall shear and slag entrainment in the vacuum arc degasser using mathematical modelling. ISIJ Int, 2018, 58(9): 1679 doi: 10.2355/isijinternational.ISIJINT-2018-254
  • 加载中
图(10)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  186
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 网络出版日期:  2021-03-02

目录

    /

    返回文章
    返回