NiCo-layered double hydroxides embedded with trace platinum species for boosting alkaline hydrogen evolution reaction
-
摘要: 降低铂的用量,提升铂基催化剂在碱性环境中的析氢反应性能,是电解水工业化应用的一个关键问题。本工作是在三电极体系中,以Pt丝对电极为Pt源,采用简单易于控制的循环伏安(Cyclic voltammetry, CV)电化学沉积方法,在水热制备的镍钴层状双氢氧化物(NiCo-LDHs)上实现了高分散Pt的痕量负载。利用NiCo-LDHs促进水的解离,Pt位点推动H的结合和脱附,有效解决Pt在碱性环境中析氢反应过程动力学滞缓的问题。在1 mol·L−1 KOH溶液中,在Pt负载量为30.4 g·cm−2时,Pt‒NiCo-LDHs电极驱动10 mA·cm−2电流密度的过电位仅需要56 mV,塔菲尔斜率仅为43 mV·decade−1,摆脱了Volmer步骤的限制,展现了优异的析氢催化活性。在100 mV的过电位下,Pt‒NiCo-LDHs的质量活性比商品化Pt/C电极高5.6倍。另外,Pt‒NiCo-LDHs在100 h的恒电流测试中表现出了良好的稳定性。
-
关键词:
- 镍钴层状双层氢氧化物 /
- 析氢反应 /
- 电催化 /
- 水热法 /
- 电化学沉积
Abstract: Reducing the amount of platinum (Pt) and improving the efficiency of the hydrogen evolution reaction (HER) in alkaline media is a key issue for the industrial production of hydrogen. Unlike HER under acidic conditions, the hydrogen adsorbed-atom (Had) has to be discharged from the water molecule rather than from the hydronium cation (H3O+). Pt catalysts have outstanding H adsorption and desorption free energy but are not conducive to catalyze the dissociation of water, which is the main reason for their hysteresis in alkaline HER. The combination of Pt and a cocatalyst effectively cleave the O–H bonds is an effective strategy to improve the reaction kinetics in the alkaline HER. Currently, in an alkaline electrolyte, non-noble metal hydroxide catalysts are very active for oxygen evolution reaction (OER), especially the Ni–Co hydroxide (NiCoOxHy), which effectively promotes OER owing to its excellent water dissociation ability. In this work, in a three-electrode system, a Pt wire counter electrode was used as the Pt source. Cyclic voltammetry (CV) electrochemical deposition was used to load a trace amount of Pt species onto the NiCo-layered double hydroxides (NiCo-LDHs) prepared using hydrothermal reaction on a nickel foam substrate. NiCo-LDHs can promote the dissociation of water in alkaline media, and Pt sites are beneficial for the binding and desorption of H on the electrode surface. The combination of Pt and NiCo-LDHs effectively paves a new way to enhance the slow kinetics of the hydrogen evolution reaction of Pt in an alkaline medium. The hybrid catalyst Pt‒NiCo-LDHs shows considerably improved HER performance, with a small overpotential of 56 mV to drive a typical current density of 10 mA·cm−2 and a low Tafel slope of 43 mV·decade−1 in alkaline media at an ultralow Pt loading of 30.4 g·cm−2. The mass activity of Pt‒NiCo-LDHs is 5.6 times higher than that of a commercial Pt/C catalyst with a 100 mV overpotential. Moreover, the Pt‒NiCo-LDHs catalyst exhibits outstanding stability after a 100 h test. -
图 3 NiCo-LDHs/NF和Pt‒NiCo-LDHs/NF的X射线衍射图谱和X射线光电子能谱分析图谱。(a) X射线衍射图谱;(b)X射线光电子能谱全能谱图;(c) Ni 2p;(d) Co 2p;(e) O 1s及(f) Pt 4f
Figure 3. (a) XRD patterns of NiCo-LDHs/NF and Pt‒NiCo-LDHs/NF; XPS spectra of (b) the survey scan, (c) Ni 2p, (d) Co 2p, and (e) O 1s for NiCo-LDHs/NF and Pt‒NiCo-LDHs/NF; (f) Pt 4f for Pt‒NiCo-LDHs
图 4 样品在1 mol·L-1 KOH溶液中的循环伏安曲线图(a),析氢极化曲线图(b)及其相对应的塔菲尔斜率图(c)、电化学阻抗谱图(d)、单位面积双电层电容值(e)及Pt‒NiCo-LDHs/NF在10 mA cm-2的稳定性测试图(f)
Figure 4. CV curves (a) and polarization curves (b) of samples, and Tafel plots (c), Nyquist plots (d), scan-rate dependence of the mean capacitive currents (e) for different catalysts and Chronoamperometric curves for Pt‒NiCo-LDHs (f)
-
参考文献
[1] Hosseini S E, Wahid M A. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew Sustain Energy Rev, 2016, 57: 850 doi: 10.1016/j.rser.2015.12.112 [2] Reece S Y, Hamel J A, Sung K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science, 2011, 334(6056): 645 doi: 10.1126/science.1209816 [3] Luo J, Im J H, Mayer M T, et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science, 2014, 345(6204): 1593 [4] Zhu J, Hu L, Zhao P, et al. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem Rev, 2020, 120(2): 851 doi: 10.1021/acs.chemrev.9b00248 [5] Chen L, Dong X, Wang Y, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide. Nat Commun, 2016, 7: 11741 doi: 10.1038/ncomms11741 [6] Koper M T M. A basic solution. Nat Chem, 2013, 5(4): 255 doi: 10.1038/nchem.1600 [7] Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci, 2010, 36(3): 307 doi: 10.1016/j.pecs.2009.11.002 [8] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321): eaad4998 doi: 10.1126/science.aad4998 [9] Jiao Y, Zheng Y, Jaroniec M, et al. ChemInform abstract: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. ChemInform, 2015, 46(25): 2060 [10] Sheng W C, Gasteiger H A, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J Electrochem Soc, 2010, 157(11): B1529 doi: 10.1149/1.3483106 [11] Conway B E, Jerkiewicz G. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the 'volcano curve' for cathodic H2 evolution kinetics. Electrochimica Acta, 2000, 45(25-26): 4075 doi: 10.1016/S0013-4686(00)00523-5 [12] Liu L, Liu Y Y, Liu C G. Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics. J Am Chem Soc, 2020, 142(11): 4985 doi: 10.1021/jacs.9b13694 [13] Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science, 2011, 334(6060): 1256 doi: 10.1126/science.1211934 [14] Wang L, Zhu Y H, Zeng Z H, et al. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy, 2017, 31: 456 doi: 10.1016/j.nanoen.2016.11.048 [15] Yin H J, Zhao S L, Zhao K, et al. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun, 2015, 6: 6430 doi: 10.1038/ncomms7430 [16] Wang L, Lin C, Huang D K, et al. Optimizing the Volmer step by single-layer nickel hydroxide nanosheets in hydrogen evolution reaction of platinum. ACS Catal, 2015, 5(6): 3801 doi: 10.1021/cs501835c [17] Xing Z C, Han C, Wang D W, et al. Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal, 2017, 7(10): 7131 doi: 10.1021/acscatal.7b01994 [18] Yu X W, Zhao J, Zheng L R, et al. Hydrogen evolution reaction in alkaline media: Alpha- or beta-nickel hydroxide on the surface of platinum? ACS Energy Lett, 2018, 3(1): 237 [19] Jadhav H S, Lim A C, Roy A, et al. Room-temperature ultrafast synthesis of NiCo-layered double hydroxide as an excellent electrocatalyst for water oxidation. ChemistrySelect, 2019, 4(8): 2409 doi: 10.1002/slct.201900063 [20] Waghmode B J, Gaikwad A P, Rode C V, et al. Calixarene intercalated NiCo layered double hydroxide for enhanced oxygen evolution catalysis. ACS Sustainable Chem Eng, 2018, 6(8): 9649 doi: 10.1021/acssuschemeng.7b04788 [21] Jiang J, Zhang A L, Li L L, et al. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J Power Sources, 2015, 278: 445 doi: 10.1016/j.jpowsour.2014.12.085 [22] Liang H F, Meng F, Cabán-Acevedo M, et al. Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett, 2015, 15(2): 1421 doi: 10.1021/nl504872s [23] Liu J, Zhang Y H, Huang Z A, et al. Photoelectrocatalytic oxidation of methane over three-dimensional ZnO/CdS/NiFe layered double hydroxide. Chin J Eng, 2021, 43(8): 9刘佳, 张英华, 黄志安, 等. 三维ZnO/CdS/NiFe层状双金属氢氧化物光电催化氧化甲烷. 工程科学学报, 2021, 43(8):9 [24] Chen R, Yang C J, Cai W Z, et al. Use of platinum as the counter electrode to study the activity of nonprecious metal catalysts for the hydrogen evolution reaction. ACS Energy Lett, 2017, 2(5): 1070 doi: 10.1021/acsenergylett.7b00219 [25] Liu Y, Gokcen D, Bertocci U, et al. Self-terminating growth of platinum films by electrochemical deposition. Science, 2012, 338(6112): 1327 doi: 10.1126/science.1228925 [26] Liu Y L, Wan L L, Wang J, et al. Binary electrocatalyst composed of Mo2C nanocrystals with ultra-low Pt loadings anchored in TiO2 nanotube arrays for hydrogen evolution reaction. Appl Surf Sci, 2020, 509: 144679 doi: 10.1016/j.apsusc.2019.144679 [27] Zhang B W, Jiang K, Wang H T, et al. Fluoride-induced dynamic surface self-reconstruction produces unexpectedly efficient oxygen-evolution catalyst. Nano Lett, 2019, 19(1): 530 doi: 10.1021/acs.nanolett.8b04466 [28] Chen G B, Wang T, Zhang J, et al. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv Mater, 2018, 30(10): 1706279 doi: 10.1002/adma.201706279 [29] Li D, Zhang B W, Li Y, et al. Boosting hydrogen evolution activity in alkaline media with dispersed ruthenium clusters in NiCo-layered double hydroxide. Electrochem Commun, 2019, 101: 23 doi: 10.1016/j.elecom.2019.01.014 [30] Zhang B W, Qi Z Y, Wu Z S, et al. Defect-rich 2D material networks for advanced oxygen evolution catalysts. ACS Energy Lett, 2019, 4(1): 328 doi: 10.1021/acsenergylett.8b02343 [31] Wang Y, Zhuo H Y, Zhang X, et al. Synergistic effect between undercoordinated platinum atoms and defective nickel hydroxide on enhanced hydrogen evolution reaction in alkaline solution. Nano Energy, 2018, 48: 590 doi: 10.1016/j.nanoen.2018.03.080 [32] Yu F Y, Lang Z L, Yin L Y, et al. Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat Commun, 2020, 11: 490 doi: 10.1038/s41467-019-14274-z [33] Zhao J Y, Zeng Y, Wang J, et al. Ultrahigh electrocatalytic activity with trace amounts of platinum loadings on free-standing mesoporous titanium nitride nanotube arrays for hydrogen evolution reactions. Nanoscale, 2020, 12(28): 15393 doi: 10.1039/D0NR01316A [34] Bockris J O, Conway B E. The velocity of hydrogen evolution at silver cathodes as a function of hydrogen ion concentration. Trans Faraday Soc, 1952, 48: 724 doi: 10.1039/tf9524800724 -