• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆破P波作用下直埋压力管道安全振速研究

朱斌 蒋楠 周传波 贾永胜 吴廷尧

朱斌, 蒋楠, 周传波, 贾永胜, 吴廷尧. 爆破P波作用下直埋压力管道安全振速研究[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.01.10.001
引用本文: 朱斌, 蒋楠, 周传波, 贾永胜, 吴廷尧. 爆破P波作用下直埋压力管道安全振速研究[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.01.10.001
ZHU Bin, JIANG Nan, ZHOU Chuan-bo, JIA Yong-sheng, WU Ting-yao. Safe vibration velocity of directly buried pressure pipeline under blasting P wave[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.01.10.001
Citation: ZHU Bin, JIANG Nan, ZHOU Chuan-bo, JIA Yong-sheng, WU Ting-yao. Safe vibration velocity of directly buried pressure pipeline under blasting P wave[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.01.10.001

爆破P波作用下直埋压力管道安全振速研究

doi: 10.13374/j.issn2095-9389.2021.01.10.001
基金项目: 国家自然科学基金资助项目(41807265, 41972286);爆破工程湖北省重点实验室开放基金重点资助项目(HKLBEF202001)
详细信息
    通讯作者:

    E-mail: jiangnan@cug.edu.cn

  • 中图分类号: TD235

Safe vibration velocity of directly buried pressure pipeline under blasting P wave

More Information
  • 摘要: 基于爆破产生的P波入射作用下均匀内压薄壁管道的受力特点,采用拟静力分析和叠加原理建立压力管道爆破地震波作用下的应力解析计算模型;基于压力管道材料屈服特性及Tresca屈服理论,建立爆破P波作用下压力管道的振动安全判据计算模型,并结合爆炸影响的直埋压力薄壁管道工程案例进行解析验算。研究结果表明:爆破荷载施加前管道仅受均匀内压,具有初始轴向和切向应力,爆破发生后,管道同时受到内压和爆破地震波P波动荷载作用;管−土界面入射波临界角较小,管道峰值应力随入射角度增大减小,垂直入射时主要发生拉伸破坏,全反射时主要为切向破坏;压力管道安全控制振速随入射角的增大而增大,随运行内压的增大而减小,实际工程中根据管道内压实际情况,选择较小的值作为安全控制值。

     

  • 图  1  压力管道邻近爆破荷载特征示意图。(a)压力管道附近的爆破地震波;(b)燃气管道荷载示意

    Figure  1.  Characteristics of the pressure pipe near the blast: (a) blasting near the pressure pipe; (b) load on the gas pipe

    图  2  平面P波入射管−土界面示意图

    Figure  2.  Schematic diagram of the planar P wave incident to the tube-soil interface

    图  3  管−土界面位移及单元应力模型

    Figure  3.  Pipe-soil interface displacement and element stress model

    图  4  不同运行压力下管道安全振速.(a)计算实例1;(b)计算实例2.

    Figure  4.  Safe vibration speed of the pipeline under different operating pressures: (a) Example 1; (b) Example 2

    表  1  计算实例介质波速和临界角计算

    Table  1.   Calculation examples’ media wave velocity and critical angle calculation

    Examplescppipe/
    (m·s−1)
    cpsoil/
    (m·s−1)
    cspipe/
    (m·s−1)
    cssoil/
    (m·s−1)
    θpcritical/
    (°)
    θscritical/
    (°)
    Example 1561826030001252.51.27
    Example 2591022031591112.251.13
    下载: 导出CSV

    表  2  不同入射角下的管道安全振速

    Table  2.   Safe vibration velocity of the pipeline under different incident angles

    ExamplesSafety vibration velocity/(cm·s−1)
    Incident
    angle of
    Incident
    angle of
    10°
    Incident
    angle of
    20°
    Incident
    angle of
    30°
    Incident
    angle of
    40°
    Incident
    angle of
    50°
    Incident
    angle of
    60°
    Incident
    angle of
    70°
    Incident
    angle of
    80°
    Example 1 9.24 11.97 48.38 111.08 203.85 334.06 518.98 813.62 1511.81
    Example 2 7.62 13.19 41.93 79.70 125.89 183.32 260.48 384.24 691.89
    下载: 导出CSV
  • [1] Zhang L M, Zhao M S, Chi E A, et al. Experiments for effect of blasting vibration on underground pipeline and risk prediction. J Vib Shock, 2017, 36(16): 241

    张黎明, 赵明生, 池恩安, 等. 爆破振动对地下管道影响试验及风险预测. 振动与冲击, 2017, 36(16):241
    [2] Guan X M, Zhang L, Wang L M, et al. Blasting vibration characteristics and safety standard of pipeline passed down by tunnel in short distance. J Central South Univ Sci Technol, 2019, 50(11): 2870 doi: 10.11817/j.issn.1672-7207.2019.11.026

    管晓明, 张良, 王利民, 等. 隧道近距下穿管线的爆破振动特征及安全标准. 中南大学学报(自然科学版), 2019, 50(11):2870 doi: 10.11817/j.issn.1672-7207.2019.11.026
    [3] Zheng S Y, Yang L Z. Dynamic response law of buried gas pipeline caused by blasting seismic waves of undercrossing tunneling. Blasting, 2015, 32(4): 69 doi: 10.3963/j.issn.1001-487X.2015.04.014

    郑爽英, 杨立中. 下穿隧道爆破地震作用下埋地输气管道的动力响应规律研究. 爆破, 2015, 32(4):69 doi: 10.3963/j.issn.1001-487X.2015.04.014
    [4] Xia Y Q, Jiang N, Yao Y K, et al. Dynamic responses of a concrete pipeline with bell-and-spigot joints buried in a silty clay layer to blasting seismic waves. Explos Shock Waves, 2020, 40(4): 73

    夏宇磬, 蒋楠, 姚颖康, 等. 粉质黏土层预埋承插式混凝土管道对爆破振动的动力响应. 爆炸与冲击, 2020, 40(4):73
    [5] Zhu B, Jiang N, Jia Y S, et al. Field experiment on blasting vibration effect of underpass gas pipelines. Chin J Rock Mech Eng, 2019, 38(12): 2582

    朱斌, 蒋楠, 贾永胜, 等. 下穿燃气管道爆破振动效应现场试验研究. 岩石力学与工程学报, 2019, 38(12):2582
    [6] Zhang L M, Zhao C L, Chi E A, et al. Experimental investigation on allowed blasting vibration velocity of underground pipeline. Blasting, 2019, 36(4): 146

    张黎明, 赵昌龙, 池恩安, 等. 地下管道爆破振动安全允许峰值振速试验研究. 爆破, 2019, 36(4):146
    [7] Zhong D W, Gong X C, Tu S W, et al. Dynamic responses of PE pipes directly buried in high saturated clay to blast wave. Explos Shock Waves, 2019, 39(3): 51

    钟冬望, 龚相超, 涂圣武, 等. 高饱和黏土中爆炸波作用下直埋聚乙烯管的动力响应. 爆炸与冲击, 2019, 39(3):51
    [8] Gong X C, Zhong D W, Si J F, et al. Dynamic responses of hollow steel pipes directly buried in high-saturated clay to blast waves. Explos Shock Waves, 2020, 40(2): 13

    龚相超, 钟冬望, 司剑峰, 等. 高饱和黏性土中爆炸波作用下直埋钢管(空管)动态响应. 爆炸与冲击, 2020, 40(2):13
    [9] Mokhtari M, Alavi Nia A. A parametric study on the mechanical performance of buried X65 steel pipelines under subsurface detonation. Arch Civ Mech Eng, 2015, 15(3): 668 doi: 10.1016/j.acme.2014.12.013
    [10] Mokhtari M, Alavi Nia A. The application of CFRP to strengthen buried steel pipelines against subsurface explosion. Soil Dyn Earthq Eng, 2016, 87: 52 doi: 10.1016/j.soildyn.2016.04.009
    [11] Liu Y P, Qiao L, Xu B. Dynamic response of liquid-filled pipe embedded in saturated soil due to P waves. Rock Soil Mech, 2013, 34(11): 3151

    刘优平, 乔兰, 徐斌. P波作用下饱和土中输流管道动力响应. 岩土力学, 2013, 34(11):3151
    [12] Wang T C, Wang H. Dynamic analysis of underground liquid-filled pipe impacted by P waves. J Tianjin Univ, 2010, 43(4): 349

    王铁成, 王卉. P波作用下地下输流管道的动力响应分析. 天津大学学报, 2010, 43(4):349
    [13] Ghaznavi A, Oskouei A V. The effect of three-dimensional earthquake P-wave propagational speed on buried continues straight steel pipelines. Eng J, 2017, 21(4): 39 doi: 10.4186/ej.2017.21.4.39
    [14] He Z Y, Liu H X, He L M, et al. Research progress of fluctuating force caused by internal gas-liquid flow. Chin J Eng, 2021, 43(1): 129

    何兆洋, 刘海潇, 何利民, 等. 管道内气液两相流流激力研究进展. 工程科学学报, 2021, 43(1):129
    [15] Gao Q D, Lu W B, Yang Z W, et al. Components and evolution laws of seismic waves induced by vertical-hole blasting. Chin J Rock Mech Eng, 2019, 38(1): 18

    高启栋, 卢文波, 杨招伟, 等. 垂直孔爆破诱发地震波的成分构成及演化规律. 岩石力学与工程学报, 2019, 38(1):18
    [16] Li J C, Ma G W, Zhou Y X. Analytical study of underground explosion-induced ground motion. Rock Mech Rock Eng, 2012, 45(6): 1037 doi: 10.1007/s00603-011-0200-3
    [17] Zhou J R, Lu W B, Zhang L, et al. Attenuation of vibration frequency during propagation of blasting seismic wave. Chin J Rock Mech Eng, 2014, 33(11): 2171

    周俊汝, 卢文波, 张乐, 等. 爆破地震波传播过程的振动频率衰减规律研究. 岩石力学与工程学报, 2014, 33(11):2171
    [18] Chen M, Lu W B. The influence of explosive stress wave on young concrete lining. Rock Soil Mech, 2008, 29(2): 455 doi: 10.3969/j.issn.1000-7598.2008.02.031

    陈明, 卢文波. 爆炸应力波对新浇混凝土衬砌的影响研究. 岩土力学, 2008, 29(2):455 doi: 10.3969/j.issn.1000-7598.2008.02.031
    [19] Liu X N, Liu C, Liu B, et al. Study on the evaluation method of the pressure vessel burst pressure calculation formula. J Mech Strength, 2017, 39(6): 1409

    刘小宁, 刘岑, 刘兵, 等. 承压容器爆破压力计算公式的评价方法研究. 机械强度, 2017, 39(6):1409
    [20] Li H T, Lu W B, Shu D Q, et al. Study on the safety velocity for concrete lining under P wave loading. Explos Shock Waves, 2007, 27(1): 34 doi: 10.3321/j.issn:1001-1455.2007.01.006

    李洪涛, 卢文波, 舒大强, 等. P波作用下衬砌混凝土的爆破安全振动速度研究. 爆炸与冲击, 2007, 27(1):34 doi: 10.3321/j.issn:1001-1455.2007.01.006
    [21] Hu S Y, Zhou C B, Jiang N, et al. Study on safety blasting vibration velocity for concrete airport runway subjected to P-waves. J South China Univ Technol Nat Sci, 2018, 46(4): 129

    胡守云, 周传波, 蒋楠, 等. P波作用下机场跑道的爆破安全振动速度研究. 华南理工大学学报(自然科学版), 2018, 46(4):129
    [22] Zhang J, Zhang H, Zhang L, et al. Buckling response analysis of buried steel pipe under multiple explosive loadings. J Pipeline Syst Eng Pract, 2020, 11(2): 04020010 doi: 10.1061/(ASCE)PS.1949-1204.0000431
    [23] Kong L C. Study on properties of nodular cast iron used for pressure vessel. Foundry Technol, 2015, 36(12): 2855

    孔令超. 压力容器用球墨铸铁的性能研究. 铸造技术, 2015, 36(12):2855
    [24] Ministry of Construction of the People's Republic of China. GB20251—2015 Code for design of gas transmission pipeline engineering. Beijing: China Industrial Press, 2015

    中华人民共和国建设部. GB 50251—2015 输气管道工程设计规范. 北京: 建筑工业出版社, 2015
    [25] Wang H T, Jin H, Jia J Q, et al. Model test study on the influence of subway tunnel drilling and blasting method on adjacent buried pipeline. Chin J Rock Mech Eng, 2018, 37(Suppl 1): 3332

    王海涛, 金慧, 贾金青, 等. 地铁隧道钻爆法施工对邻近埋地管道影响的模型试验研究. 岩石力学与工程学报, 2018, 37(增刊1): 3332
    [26] Ministry of Construction of the People's Republic of China. GB50028—2006 Urban Gas Design Code. Beijing: China Industrial Press, 2006

    中华人民共和国建设部. GB 50028—2006 城镇燃气设计规范. 北京: 中国建筑工业出版社, 2006
    [27] General Administration of Quality Supervision. GB 6722—2014 Blasting Safety Code. Beijing: Standards Press of China, 2015

    中华人民共和国国家质量监督检验检疫总局. GB 6722—2014爆破安全规程. 北京: 中国标准出版社, 2015
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  35
  • HTML全文浏览量:  51
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 网络出版日期:  2021-12-28

目录

    /

    返回文章
    返回